A causal learning approach to in-orbit inertial parameter estimation for multi-payload deployers
- URL: http://arxiv.org/abs/2501.14824v1
- Date: Tue, 21 Jan 2025 16:37:17 GMT
- Title: A causal learning approach to in-orbit inertial parameter estimation for multi-payload deployers
- Authors: Konstantinos Platanitis, Miguel Arana-Catania, Saurabh Upadhyay, Leonard Felicetti,
- Abstract summary: This paper discusses an approach to inertial parameter estimation for the case of cargo carrying spacecraft.
It is based on causal learning, i.e. learning from the responses of the spacecraft, under actuation.
- Score: 0.5416466085090772
- License:
- Abstract: This paper discusses an approach to inertial parameter estimation for the case of cargo carrying spacecraft that is based on causal learning, i.e. learning from the responses of the spacecraft, under actuation. Different spacecraft configurations (inertial parameter sets) are simulated under different actuation profiles, in order to produce an optimised time-series clustering classifier that can be used to distinguish between them. The actuation is comprised of finite sequences of constant inputs that are applied in order, based on typical actuators available. By learning from the system's responses across multiple input sequences, and then applying measures of time-series similarity and F1-score, an optimal actuation sequence can be chosen either for one specific system configuration or for the overall set of possible configurations. This allows for both estimation of the inertial parameter set without any prior knowledge of state, as well as validation of transitions between different configurations after a deployment event. The optimisation of the actuation sequence is handled by a reinforcement learning model that uses the proximal policy optimisation (PPO) algorithm, by repeatedly trying different sequences and evaluating the impact on classifier performance according to a multi-objective metric.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Spacecraft inertial parameters estimation using time series clustering and reinforcement learning [0.504868948270058]
This paper presents a machine learning approach to estimate the inertial parameters of a spacecraft in cases when those change during operations.
The performance of the proposed strategy is assessed against the case of a multi-satellite deployment system showing that the algorithm is resilient towards common disturbances in such kinds of operations.
arXiv Detail & Related papers (2024-08-06T20:53:02Z) - A Unified Gaussian Process for Branching and Nested Hyperparameter
Optimization [19.351804144005744]
In deep learning, tuning parameters with conditional dependence are common in practice.
New GP model accounts for the dependent structure among input variables through a new kernel function.
High prediction accuracy and better optimization efficiency are observed in a series of synthetic simulations and real data applications of neural networks.
arXiv Detail & Related papers (2024-01-19T21:11:32Z) - Multi-Weight Ranking for Multi-Criteria Decision Making [0.0]
Cone distribution functions from statistics are turned into Multi-Criteria Decision Making tools.
The ranking functions are then extended to providing unary indicators for set preferences.
A potential application in machine learning is outlined.
arXiv Detail & Related papers (2023-12-04T11:13:42Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - Hierarchical Collaborative Hyper-parameter Tuning [0.0]
Hyper- parameter tuning is among the most critical stages in building machine learning solutions.
This paper demonstrates how multi-agent systems can be utilized to develop a distributed technique for determining near-optimal values.
arXiv Detail & Related papers (2022-05-11T05:16:57Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Learning Stochastic Optimal Policies via Gradient Descent [17.9807134122734]
We systematically develop a learning-based treatment of optimal control (SOC)
We propose a derivation of adjoint sensitivity results for differential equations through direct application of variational calculus.
We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
arXiv Detail & Related papers (2021-06-07T16:43:07Z) - Policy Analysis using Synthetic Controls in Continuous-Time [101.35070661471124]
Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference.
We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations.
arXiv Detail & Related papers (2021-02-02T16:07:39Z) - Learning over no-Preferred and Preferred Sequence of items for Robust
Recommendation [66.8722561224499]
We propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback.
We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach.
arXiv Detail & Related papers (2020-12-12T22:10:15Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.