Mode Distinguishability in Multi-photon Interference
- URL: http://arxiv.org/abs/2501.14915v1
- Date: Fri, 24 Jan 2025 20:50:14 GMT
- Title: Mode Distinguishability in Multi-photon Interference
- Authors: Noah Crum, Md Mehdi Hassan, Adrien Green, George Siopsis,
- Abstract summary: We develop a model for the simultaneous characterization of polarization and spectro-temporal mode mismatch on the coincidence probabilities.
We study the coincidence probability for coherent states as a function of source intensity, as well as spectro-temporal and polarization mismatch of the incident beams.
- Score: 0.0
- License:
- Abstract: The Hong-Ou-Mandel (HOM) effect is a quintessential process in various quantum information technologies and quantum optics applications. In this work, we investigate multi-photon interference, developing a model for the simultaneous characterization of polarization and spectro-temporal mode mismatch on the coincidence probabilities including the effects of realistic imperfections of devices used in HOM experiments. We also study the coincidence probability for coherent states as a function of source intensity, as well as spectro-temporal and polarization mismatch of the incident beams. We apply our model to the case of multi-photon interference from independent sources and analyze the consequences of mode mismatch in various instances that occur in quantum networking including entanglement swapping, quantum key distribution, quantum sensing, quantum optical classification, and photonic quantum computing.
Related papers
- Impact of polarization mode dispersion on entangled photon distribution [34.82692226532414]
Polarization mode dispersion (PMD) in optical fibers poses a major challenge for maintaining the fidelity of quantum states for quantum communications.
Our research proposes effective methods to mitigate PMD effects for broadband entangled photons and evaluates the impact of higher-order PMD effects.
arXiv Detail & Related papers (2024-08-03T11:29:45Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Emergence of multiphoton quantum coherence by light propagation [0.0]
modification of quantum coherence of multiphoton systems in free space.
We show that these processes can lead to multiphoton systems with sub-shot-noise quantum properties.
We believe that the possibility of producing quantum systems with modified properties of coherence, through linear propagation, can have dramatic implications for diverse quantum technologies.
arXiv Detail & Related papers (2024-03-25T21:21:50Z) - Coherently driven quantum features using a linear optics-based
polarization-basis control [0.0]
Coherence approach has been applied to interpret quantum features such as the Hong-Ou-Mandel (HOM) effect.
A perfectly coherent analysis shows the same photon bunching of the paired coherent photons on a beam splitter.
arXiv Detail & Related papers (2023-03-22T15:09:14Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Multiphoton Quantum van Cittert-Zernike Theorem [0.0]
We introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems.
We show that conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit.
arXiv Detail & Related papers (2022-02-15T01:14:49Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.