Personalized Layer Selection for Graph Neural Networks
- URL: http://arxiv.org/abs/2501.14964v1
- Date: Fri, 24 Jan 2025 22:49:53 GMT
- Title: Personalized Layer Selection for Graph Neural Networks
- Authors: Kartik Sharma, Vineeth Rakesh Mohan, Yingtong Dou, Srijan Kumar, Mahashweta Das,
- Abstract summary: Graph Neural Networks (GNNs) combine node attributes over a fixed granularity of the local graph structure around a node to predict its label.
We propose a novel algorithm, MetSelect1, to select the optimal representation layer to classify each node.
Results on 10 datasets and 3 different GNNs show that we significantly improve the node classification accuracy of GNNs in a plug-and-play manner.
- Score: 24.201142695794157
- License:
- Abstract: Graph Neural Networks (GNNs) combine node attributes over a fixed granularity of the local graph structure around a node to predict its label. However, different nodes may relate to a node-level property with a different granularity of its local neighborhood, and using the same level of smoothing for all nodes can be detrimental to their classification. In this work, we challenge the common fact that a single GNN layer can classify all nodes of a graph by training GNNs with a distinct personalized layer for each node. Inspired by metric learning, we propose a novel algorithm, MetSelect1, to select the optimal representation layer to classify each node. In particular, we identify a prototype representation of each class in a transformed GNN layer and then, classify using the layer where the distance is smallest to a class prototype after normalizing with that layer's variance. Results on 10 datasets and 3 different GNNs show that we significantly improve the node classification accuracy of GNNs in a plug-and-play manner. We also find that using variable layers for prediction enables GNNs to be deeper and more robust to poisoning attacks. We hope this work can inspire future works to learn more adaptive and personalized graph representations.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Contrastive Meta-Learning for Few-shot Node Classification [54.36506013228169]
Few-shot node classification aims to predict labels for nodes on graphs with only limited labeled nodes as references.
We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs.
arXiv Detail & Related papers (2023-06-27T02:22:45Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
We propose novel objective terms for the training of GNNs for node classification.
Our first term seeks to maximize the mutual information between node and label features.
Our second term promotes anisotropic smoothness in the prediction maps.
arXiv Detail & Related papers (2022-11-29T23:25:14Z) - NDGGNET-A Node Independent Gate based Graph Neural Networks [6.155450481110693]
For nodes with sparse connectivity, it is difficult to obtain enough information through a single GNN layer.
In this thesis, we define a novel framework that allows the normal GNN model to accommodate more layers.
Experimental results show that our proposed model can effectively increase the model depth and perform well on several datasets.
arXiv Detail & Related papers (2022-05-11T08:51:04Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
Graph Neural Networks (GNNs) compute node representations by taking into account the topology of the node's ego-network and the features of the ego-network's nodes.
When the nodes do not have high-quality features, GNNs learn an embedding layer to compute node embeddings and use them as input features.
To reduce the memory associated with this embedding layer, hashing-based approaches, commonly used in applications like NLP and recommender systems, can potentially be used.
We present approaches that take advantage of the nodes' position in the graph to dramatically reduce the memory required.
arXiv Detail & Related papers (2021-08-31T22:42:25Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.