論文の概要: Robust Cross-Etiology and Speaker-Independent Dysarthric Speech Recognition
- arxiv url: http://arxiv.org/abs/2501.14994v1
- Date: Sat, 25 Jan 2025 00:02:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:55.777132
- Title: Robust Cross-Etiology and Speaker-Independent Dysarthric Speech Recognition
- Title(参考訳): ロバストなクロスエチオロジーと話者非依存型変形性音声認識
- Authors: Satwinder Singh, Qianli Wang, Zihan Zhong, Clarion Mendes, Mark Hasegawa-Johnson, Waleed Abdulla, Seyed Reza Shahamiri,
- Abstract要約: 本稿では,最近リリースされた音声アクセシビリティ・プロジェクト (SAP-1005) データセットの評価に焦点をあてて,話者非依存型音声認識システムを提案する。
本研究の主な目的は, 話者に関係なく, 変形性音声を正確に認識できる頑健な話者非依存モデルを開発することである。
第2の目的として, TORGOデータセット上で評価することで, モデルのクロスエクソロジー性能をテストすることを目的とする。
- 参考スコア(独自算出の注目度): 26.26414139359157
- License:
- Abstract: In this paper, we present a speaker-independent dysarthric speech recognition system, with a focus on evaluating the recently released Speech Accessibility Project (SAP-1005) dataset, which includes speech data from individuals with Parkinson's disease (PD). Despite the growing body of research in dysarthric speech recognition, many existing systems are speaker-dependent and adaptive, limiting their generalizability across different speakers and etiologies. Our primary objective is to develop a robust speaker-independent model capable of accurately recognizing dysarthric speech, irrespective of the speaker. Additionally, as a secondary objective, we aim to test the cross-etiology performance of our model by evaluating it on the TORGO dataset, which contains speech samples from individuals with cerebral palsy (CP) and amyotrophic lateral sclerosis (ALS). By leveraging the Whisper model, our speaker-independent system achieved a CER of 6.99% and a WER of 10.71% on the SAP-1005 dataset. Further, in cross-etiology settings, we achieved a CER of 25.08% and a WER of 39.56% on the TORGO dataset. These results highlight the potential of our approach to generalize across unseen speakers and different etiologies of dysarthria.
- Abstract(参考訳): 本稿では、パーキンソン病(PD)患者の音声データを含む最近リリースされた音声アクセシビリティー・プロジェクト(SAP-1005)データセットの評価に焦点をあてた話者非依存型音声認識システムを提案する。
変形性音声認識の研究の活発化にもかかわらず、既存のシステムの多くは話者に依存し、適応的であり、様々な話者やエチオロジーにまたがる一般化性を制限している。
本研究の主な目的は, 話者に関係なく, 変形性音声を正確に認識できる頑健な話者非依存モデルを開発することである。
また,脳性麻痺 (CP) と筋萎縮性側索硬化症 (ALS) の患者からの音声サンプルを含むTORGOデータセットを用いて,本モデルの有効性を評価することを目的としている。
Whisperモデルを利用することで、我々の話者非依存システムは、SAP-1005データセット上で6.99%のCERと10.71%のWERを達成した。
さらに、クロスエチオロジー設定では25.08%のCERと39.56%のWERをTORGOデータセットで達成しました。
これらの結果は、見えない話者にまたがって一般化する我々のアプローチの可能性を浮き彫りにした。
関連論文リスト
- Self-supervised ASR Models and Features For Dysarthric and Elderly Speech Recognition [71.87998918300806]
本稿では,TDNNとConformer ASRシステムにSSLプリトレーニングモデルとその機能を統合するアプローチについて検討する。
ドメイン適応型HuBERT、wav2vec2-conformer、マルチ言語型XLSRモデルを統合することで構築されたTDNNシステムは、スタンドアロンの微調整型SSL事前訓練モデルより一貫して優れている。
DementiaBank Pitt の高齢者音声認識出力を用いて,アルツハイマー病の検出精度の向上も行った。
論文 参考訳(メタデータ) (2024-07-03T08:33:39Z) - A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings [8.996456485141069]
本稿では,パーキンソン病(PD)をWebアプリケーションを用いて収集した英語パングラム発話音声を通して認識する枠組みを提案する。
我々のデータセットには、PDと診断された392人を含む1306人の世界的コホートが含まれている。
We used deep learning embeddeds derived from semi-supervised model, Wav2Vec 2.0, WavLM, ImageBind represented the speech dynamics associated with PD。
論文 参考訳(メタデータ) (2024-05-21T16:06:51Z) - Detecting Speech Abnormalities with a Perceiver-based Sequence
Classifier that Leverages a Universal Speech Model [4.503292461488901]
いくつかの神経疾患の音声反射異常を検出するPerceiver-based sequenceを提案する。
このシーケンスとUniversal Speech Model (USM)を組み合わせ、1200万時間に及ぶ多様な音声録音をトレーニング(教師なし)する。
我々のモデルは標準変圧器 (80.9%) および知覚器 (81.8%) モデルより優れ、平均精度は83.1%である。
論文 参考訳(メタデータ) (2023-10-16T21:07:12Z) - A New Benchmark of Aphasia Speech Recognition and Detection Based on
E-Branchformer and Multi-task Learning [29.916793641951507]
本稿では,最新の音声認識技術を用いた失語症音声認識のための新しいベンチマークを提案する。
CTC/Attentionアーキテクチャに基づく2つのマルチタスク学習手法を導入し、両方のタスクを同時に実行する。
当システムでは,中等度失語症患者に対して,最先端の話者レベル検出精度(97.3%)と相対的なWER低下率(1%)を達成している。
論文 参考訳(メタデータ) (2023-05-19T15:10:36Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
アルツハイマー病(AD)の早期診断は、予防ケアがさらなる進行を遅らせるのに不可欠である。
本稿では,DementiaBank Pitt コーパスをベースとした最新のコンバータに基づく音声認識システムの開発について述べる。
論文 参考訳(メタデータ) (2022-06-23T12:50:55Z) - Exploiting Cross-domain And Cross-Lingual Ultrasound Tongue Imaging
Features For Elderly And Dysarthric Speech Recognition [55.25565305101314]
調音機能は音響信号歪みに不変であり、音声認識システムにうまく組み込まれている。
本稿では,A2Aモデルにおける24時間TaLコーパスの並列音声・超音波舌画像(UTI)データを利用したクロスドメインおよびクロスランガルA2Aインバージョン手法を提案する。
生成した調音機能を組み込んだ3つのタスクの実験は、ベースラインのTDNNとコンフォーマーASRシステムより一貫して優れていた。
論文 参考訳(メタデータ) (2022-06-15T07:20:28Z) - The effect of speech pathology on automatic speaker verification -- a
large-scale study [6.468412158245622]
病的スピーチは 健康なスピーチに比べて プライバシー侵害のリスクが高まっています
ディスフォニアの成人は再識別のリスクが高まる一方、ディスフォニアのような症状は健康な話者に匹敵する結果をもたらす。
病理型間でデータをマージすると、EERは著しく低下し、自動話者検証における病理多様性の潜在的利点が示唆された。
論文 参考訳(メタデータ) (2022-04-13T15:17:00Z) - Recent Progress in the CUHK Dysarthric Speech Recognition System [66.69024814159447]
障害音声は、現在のデータ集約型ディープニューラルネットワーク(DNN)に基づく自動音声認識技術に対して、幅広い課題を提示している。
本稿では,香港の中国大学における音声認識システムの性能向上に向けた最近の研究成果について述べる。
論文 参考訳(メタデータ) (2022-01-15T13:02:40Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
本稿では,不規則音声認識のための一連のデータ拡張手法について検討する。
正常な音声と無秩序な音声の両方が増強過程に利用された。
UASpeechコーパスを用いた最終話者適応システムと、最大2.92%の絶対単語誤り率(WER)の速度摂動に基づく最良の拡張アプローチ
論文 参考訳(メタデータ) (2022-01-14T17:09:22Z) - Comparison of Speaker Role Recognition and Speaker Enrollment Protocol
for conversational Clinical Interviews [9.728371067160941]
エンドツーエンドのニューラルネットワークアーキテクチャをトレーニングし、各タスクに適応し、各アプローチを同じメトリクスで評価します。
結果は面接者の人口統計にも依存せず,その臨床的意義を浮き彫りにした。
論文 参考訳(メタデータ) (2020-10-30T09:07:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。