論文の概要: A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings
- arxiv url: http://arxiv.org/abs/2405.17206v2
- Date: Mon, 18 Nov 2024 20:43:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:32:58.461900
- Title: A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings
- Title(参考訳): 半教師付き音声埋め込みを用いたPD検出のための新しい融合アーキテクチャ
- Authors: Tariq Adnan, Abdelrahman Abdelkader, Zipei Liu, Ekram Hossain, Sooyong Park, MD Saiful Islam, Ehsan Hoque,
- Abstract要約: 本稿では,パーキンソン病(PD)をWebアプリケーションを用いて収集した英語パングラム発話音声を通して認識する枠組みを提案する。
我々のデータセットには、PDと診断された392人を含む1306人の世界的コホートが含まれている。
We used deep learning embeddeds derived from semi-supervised model, Wav2Vec 2.0, WavLM, ImageBind represented the speech dynamics associated with PD。
- 参考スコア(独自算出の注目度): 8.996456485141069
- License:
- Abstract: We present a framework to recognize Parkinson's disease (PD) through an English pangram utterance speech collected using a web application from diverse recording settings and environments, including participants' homes. Our dataset includes a global cohort of 1306 participants, including 392 diagnosed with PD. Leveraging the diversity of the dataset, spanning various demographic properties (such as age, sex, and ethnicity), we used deep learning embeddings derived from semi-supervised models such as Wav2Vec 2.0, WavLM, and ImageBind representing the speech dynamics associated with PD. Our novel fusion model for PD classification, which aligns different speech embeddings into a cohesive feature space, demonstrated superior performance over standard concatenation-based fusion models and other baselines (including models built on traditional acoustic features). In a randomized data split configuration, the model achieved an Area Under the Receiver Operating Characteristic Curve (AUROC) of 88.94% and an accuracy of 85.65%. Rigorous statistical analysis confirmed that our model performs equitably across various demographic subgroups in terms of sex, ethnicity, and age, and remains robust regardless of disease duration. Furthermore, our model, when tested on two entirely unseen test datasets collected from clinical settings and from a PD care center, maintained AUROC scores of 82.12% and 78.44%, respectively. This affirms the model's robustness and it's potential to enhance accessibility and health equity in real-world applications.
- Abstract(参考訳): 本稿では,参加者の自宅を含む多様な記録環境からWebアプリケーションを用いて収集した英語パングラム発話音声を用いて,パーキンソン病(PD)を認識する枠組みを提案する。
我々のデータセットには、PDと診断された392人を含む1306人の世界的コホートが含まれている。
データセットの多様性を生かし、年齢、性別、民族など、様々な人口統計特性にまたがって、Wav2Vec 2.0、WavLM、ImageBindといった半教師付きモデルから派生した深層学習埋め込みを用いて、PDに関連する音声力学を表現した。
異なる音声埋め込みを結合的特徴空間に整合させるPD分類のための新しい融合モデルにより,標準結合型融合モデルや他のベースライン(従来の音響特徴に基づくモデルを含む)よりも優れた性能を示した。
ランダム化されたデータ分割構成では、受信器動作特性曲線(AUROC)が88.94%、精度が85.65%に達した。
厳密な統計分析により, 性別, 民族, 年齢の様々なサブグループで同程度に機能し, 疾患の持続期間にかかわらず頑健であることが明らかとなった。
さらに,AUROCスコアは82.12%,AUROCスコア78.44%であった。
これはモデルの堅牢性を確認し、現実のアプリケーションにおけるアクセシビリティとヘルスエクイティを高める可能性がある。
関連論文リスト
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
本研究は,変圧器を用いた深層学習モデルにMR画像,臨床および分子病理学的データを統合することにより,グリオーマの生存率予測を改善することを目的とする。
このモデルは、自己教師付き学習技術を用いて、高次元MRI入力を効果的に符号化し、クロスアテンションを用いた非画像データと統合する。
論文 参考訳(メタデータ) (2024-05-21T17:44:48Z) - Detecting Speech Abnormalities with a Perceiver-based Sequence
Classifier that Leverages a Universal Speech Model [4.503292461488901]
いくつかの神経疾患の音声反射異常を検出するPerceiver-based sequenceを提案する。
このシーケンスとUniversal Speech Model (USM)を組み合わせ、1200万時間に及ぶ多様な音声録音をトレーニング(教師なし)する。
我々のモデルは標準変圧器 (80.9%) および知覚器 (81.8%) モデルより優れ、平均精度は83.1%である。
論文 参考訳(メタデータ) (2023-10-16T21:07:12Z) - Role of Image Acquisition and Patient Phenotype Variations in Automatic
Segmentation Model Generalization [0.0]
本研究では,自動画像分割モデルの領域外性能と一般化能力について検討した。
健常者および多嚢胞性腎疾患(PKD)患者の非コントラスト・造影CT所見から得られたデータセット
多様なデータでトレーニングされたモデルでは、ドメイン内のデータでのみトレーニングされたモデルよりもパフォーマンスが悪くなかった。
論文 参考訳(メタデータ) (2023-07-26T20:15:19Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。