論文の概要: Federated Retrieval Augmented Generation for Multi-Product Question Answering
- arxiv url: http://arxiv.org/abs/2501.14998v1
- Date: Sat, 25 Jan 2025 00:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:30.065271
- Title: Federated Retrieval Augmented Generation for Multi-Product Question Answering
- Title(参考訳): 多製品質問応答のためのフェデレーション検索拡張生成
- Authors: Parshin Shojaee, Sai Sree Harsha, Dan Luo, Akash Maharaj, Tong Yu, Yunyao Li,
- Abstract要約: MKP-QA(MKP-QA)は、ドメイン間の確率的フェデレーション検索と関連する知識を備えた、新しい多産物知識強化QAフレームワークである。
実験の結果,MKP-QAは検索精度と応答品質の両面で,多成分RAG-QA性能を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 15.250046972086164
- License:
- Abstract: Recent advancements in Large Language Models and Retrieval-Augmented Generation have boosted interest in domain-specific question-answering for enterprise products. However, AI Assistants often face challenges in multi-product QA settings, requiring accurate responses across diverse domains. Existing multi-domain RAG-QA approaches either query all domains indiscriminately, increasing computational costs and LLM hallucinations, or rely on rigid resource selection, which can limit search results. We introduce MKP-QA, a novel multi-product knowledge-augmented QA framework with probabilistic federated search across domains and relevant knowledge. This method enhances multi-domain search quality by aggregating query-domain and query-passage probabilistic relevance. To address the lack of suitable benchmarks for multi-product QAs, we also present new datasets focused on three Adobe products: Adobe Experience Platform, Target, and Customer Journey Analytics. Our experiments show that MKP-QA significantly boosts multi-product RAG-QA performance in terms of both retrieval accuracy and response quality.
- Abstract(参考訳): 大規模言語モデルと検索型生成の最近の進歩は、企業製品に対するドメイン固有の質問応答への関心を高めている。
しかし、AIアシスタントは、多製品QA設定でしばしば課題に直面し、さまざまなドメインにわたって正確なレスポンスを必要とします。
既存のマルチドメインRAG-QAアプローチは、全てのドメインを無差別にクエリし、計算コストとLLM幻覚を増大させるか、検索結果を制限できる厳密なリソース選択に依存する。
MKP-QA(MKP-QA)は、ドメイン間の確率的フェデレーション検索と関連する知識を備えた、新しい多産物知識強化QAフレームワークである。
この方法は、クエリドメインとクエリパスの確率的妥当性を集約することで、マルチドメインの検索品質を向上させる。
多製品QAに適したベンチマークの欠如に対処するため、Adobe Experience Platform、Target、Customer Journey Analyticsの3つのAdobe製品に焦点を当てた新しいデータセットも提示する。
実験の結果,MKP-QAは検索精度と応答品質の両面で,多成分RAG-QA性能を著しく向上させることがわかった。
関連論文リスト
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - KaPQA: Knowledge-Augmented Product Question-Answering [59.096607961704656]
我々はAdobe AcrobatとPhotoshop製品に焦点を当てた2つのQAデータセットを紹介した。
また、製品QAタスクにおけるモデルの性能を高めるために、新しい知識駆動型RAG-QAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T22:14:56Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
検索クエリに対する検索および再ランクされたアイテムの高い関連性は、製品検索の成功の土台である。
本稿では,大規模言語モデル(LLM)を活用して,クエリ・イテムペア(QIP)の関連判断を大規模に自動化する手法について述べる。
本研究は,製品検索における関連判断の自動化の分野への直接的な影響を示唆するものである。
論文 参考訳(メタデータ) (2024-06-01T00:52:41Z) - Large Language Models as In-context AI Generators for Quality-Diversity [8.585387103144825]
In-context QDは、QDアーカイブから品質の異なる例をコンテキストとして、少数ショットと多ショットのプロンプトを使って興味深いソリューションを生成することを目的としている。
In-context QD display promising results than both QD baselines and similar strategy developed for single-jective optimization。
論文 参考訳(メタデータ) (2024-04-24T10:35:36Z) - HiQA: A Hierarchical Contextual Augmentation RAG for Multi-Documents QA [13.000411428297813]
コンテンツにカスケードメタデータと複数ルート検索機構を統合した,高度な多文書質問応答(MDQA)フレームワークであるHiQAを提案する。
また、MDQAの評価と研究を行うMasQAというベンチマークもリリースしました。
論文 参考訳(メタデータ) (2024-02-01T02:24:15Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
オープンドメイン質問回答(ODQA)では、ほとんどの既存の質問はコモンセンスのシングルホップ推論を必要とする。
大規模言語モデル(LLM)は、外部コーパスなしでODQAを促進するために重要な有用性を見出した。
高品質なCoTを大量生産する自動化フレームワークSP-CoTを提案する。
論文 参考訳(メタデータ) (2023-10-20T14:51:10Z) - Performance Prediction for Multi-hop Questions [7.388002745070808]
オープンドメイン型マルチホップ質問の性能を予測するための検索前手法であるmultHPを提案する。
評価の結果,提案モデルが従来のシングルホップQPPモデルよりも優れた性能を示すことが示唆された。
論文 参考訳(メタデータ) (2023-08-12T01:34:41Z) - Towards Diverse and Effective Question-Answer Pair Generation from
Children Storybooks [3.850557558248366]
本稿では,質問文と暗黙的/明示的回答を生成することにより,QA型の多様性を高めるフレームワークを提案する。
本フレームワークは,QFSベースの応答生成器,繰り返しQA生成器,関連性を考慮したランク付け器を備える。
論文 参考訳(メタデータ) (2023-06-11T06:55:59Z) - RoMQA: A Benchmark for Robust, Multi-evidence, Multi-answer Question
Answering [87.18962441714976]
堅牢でマルチエビデンスな質問応答(QA)のための最初のベンチマークであるRoMQAを紹介します。
我々は、最先端の大規模言語モデルをゼロショット、少数ショット、微調整設定で評価し、RoMQAが難しいことを発見した。
以上の結果から,RoMQAは大規模言語モデルにとって難しいベンチマークであり,より堅牢なQA手法を構築するための定量的なテストを提供する。
論文 参考訳(メタデータ) (2022-10-25T21:39:36Z) - MetaQA: Combining Expert Agents for Multi-Skill Question Answering [49.35261724460689]
マルチデータセットモデルの有望な結果にもかかわらず、いくつかのドメインやQAフォーマットは特定のアーキテクチャを必要とするかもしれません。
本稿では,専門家エージェントと,質問,回答予測,回答予測信頼度スコアを考慮した,新しい,柔軟な,学習効率の高いアーキテクチャを組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-12-03T14:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。