Adaptive Client Selection in Federated Learning: A Network Anomaly Detection Use Case
- URL: http://arxiv.org/abs/2501.15038v1
- Date: Sat, 25 Jan 2025 02:50:46 GMT
- Title: Adaptive Client Selection in Federated Learning: A Network Anomaly Detection Use Case
- Authors: William Marfo, Deepak K. Tosh, Shirley V. Moore,
- Abstract summary: This paper introduces a client selection framework for Federated Learning (FL) that incorporates differential privacy and fault tolerance.
Results demonstrate up to a 7% improvement in accuracy and a 25% reduction in training time compared to the FedL2P approach.
- Score: 0.30723404270319693
- License:
- Abstract: Federated Learning (FL) has become a widely used approach for training machine learning models on decentralized data, addressing the significant privacy concerns associated with traditional centralized methods. However, the efficiency of FL relies on effective client selection and robust privacy preservation mechanisms. Ineffective client selection can result in suboptimal model performance, while inadequate privacy measures risk exposing sensitive data. This paper introduces a client selection framework for FL that incorporates differential privacy and fault tolerance. The proposed adaptive approach dynamically adjusts the number of selected clients based on model performance and system constraints, ensuring privacy through the addition of calibrated noise. The method is evaluated on a network anomaly detection use case using the UNSW-NB15 and ROAD datasets. Results demonstrate up to a 7% improvement in accuracy and a 25% reduction in training time compared to the FedL2P approach. Additionally, the study highlights trade-offs between privacy budgets and model performance, with higher privacy budgets leading to reduced noise and improved accuracy. While the fault tolerance mechanism introduces a slight performance decrease, it enhances robustness against client failures. Statistical validation using the Mann-Whitney U test confirms the significance of these improvements, with results achieving a p-value of less than 0.05.
Related papers
- Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
This paper proposes a novel approach that enhances PFL with cutting-edge AI techniques.
We present a model that boosts the performance of individual client models and ensures robust privacy-preserving mechanisms.
This work paves the way for a new era of truly personalized and privacy-conscious AI systems.
arXiv Detail & Related papers (2025-01-30T07:03:29Z) - Efficient Client Selection in Federated Learning [0.30723404270319693]
Federated Learning (FL) enables decentralized machine learning while preserving data privacy.
This paper proposes a novel client selection framework that integrates differential privacy and fault tolerance.
arXiv Detail & Related papers (2025-01-25T02:43:55Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - BACSA: A Bias-Aware Client Selection Algorithm for Privacy-Preserving Federated Learning in Wireless Healthcare Networks [0.5524804393257919]
We propose the Bias-Aware Client Selection Algorithm (BACSA), which detects user bias and strategically selects clients based on their bias profiles.
BACSA is suitable for sensitive healthcare applications where Quality of Service (QoS), privacy and security are paramount.
arXiv Detail & Related papers (2024-11-01T21:34:43Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.