RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
- URL: http://arxiv.org/abs/2503.16251v1
- Date: Thu, 20 Mar 2025 15:46:03 GMT
- Title: RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
- Authors: Dawood Wasif, Terrence J. Moore, Jin-Hee Cho,
- Abstract summary: Existing FL frameworks struggle to balance privacy, fairness, and robustness, leading to performance disparities across demographic groups.<n>This work explores the trade-off between privacy and fairness in FL-based object detection for AVs and introduces RESFL, an integrated solution optimizing both.<n> RESFL incorporates adversarial privacy disentanglement and uncertainty-guided fairness-aware aggregation.<n>We evaluate RESFL on the FACET dataset and CARLA simulator, assessing accuracy, fairness, privacy resilience, and robustness under varying conditions.
- Score: 6.3338980105224145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous vehicles (AVs) increasingly rely on Federated Learning (FL) to enhance perception models while preserving privacy. However, existing FL frameworks struggle to balance privacy, fairness, and robustness, leading to performance disparities across demographic groups. Privacy-preserving techniques like differential privacy mitigate data leakage risks but worsen fairness by restricting access to sensitive attributes needed for bias correction. This work explores the trade-off between privacy and fairness in FL-based object detection for AVs and introduces RESFL, an integrated solution optimizing both. RESFL incorporates adversarial privacy disentanglement and uncertainty-guided fairness-aware aggregation. The adversarial component uses a gradient reversal layer to remove sensitive attributes, reducing privacy risks while maintaining fairness. The uncertainty-aware aggregation employs an evidential neural network to weight client updates adaptively, prioritizing contributions with lower fairness disparities and higher confidence. This ensures robust and equitable FL model updates. We evaluate RESFL on the FACET dataset and CARLA simulator, assessing accuracy, fairness, privacy resilience, and robustness under varying conditions. RESFL improves detection accuracy, reduces fairness disparities, and lowers privacy attack success rates while demonstrating superior robustness to adversarial conditions compared to other approaches.
Related papers
- FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning [17.853502904387376]
Federated Learning (FL) enables collaborative training of models across distributed clients without sharing local data, addressing privacy concerns in decentralized systems.<n>We propose Federated Error Minimization (FedEM), a novel algorithm that incorporates controlled perturbations through adaptive noise injection.<n> Experimental results on benchmark datasets demonstrate that FedEM significantly reduces privacy risks and preserves model accuracy, achieving a robust balance between privacy protection and utility preservation.
arXiv Detail & Related papers (2025-03-08T02:48:00Z) - Towards Trustworthy Federated Learning [26.25193909843069]
This paper develops a comprehensive framework to address three critical trustworthy challenges in federated learning (FL)<n>To improve the system's defense against Byzantine attacks, we develop a Two-sided Norm Based Screening mechanism.<n>We also adopt a differential privacy-based scheme to prevent raw data at local clients from being inferred by curious parties.
arXiv Detail & Related papers (2025-03-05T17:25:20Z) - Adaptive Client Selection in Federated Learning: A Network Anomaly Detection Use Case [0.30723404270319693]
This paper introduces a client selection framework for Federated Learning (FL) that incorporates differential privacy and fault tolerance.<n>Results demonstrate up to a 7% improvement in accuracy and a 25% reduction in training time compared to the FedL2P approach.
arXiv Detail & Related papers (2025-01-25T02:50:46Z) - FedFDP: Fairness-Aware Federated Learning with Differential Privacy [28.58589747796768]
Federated learning (FL) is an emerging machine learning paradigm designed to address the challenge of data silos.<n>To tackle persistent issues related to fairness and data privacy, we propose a fairness-aware FL algorithm called FedFair.<n>Building on FedFair, we introduce differential privacy to create the FedFDP algorithm, which addresses trade-offs among fairness, privacy protection, and model performance.
arXiv Detail & Related papers (2024-02-25T08:35:21Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
We propose a privacy-preserving uplink over-the-air computation (AirComp) method, termed FLORAS.
We prove that FLORAS offers both item-level and client-level differential privacy guarantees.
A new FL convergence bound is derived which, combined with the privacy guarantees, allows for a smooth tradeoff between the achieved convergence rate and differential privacy levels.
arXiv Detail & Related papers (2023-06-14T06:35:10Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.