CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs
- URL: http://arxiv.org/abs/2501.15067v1
- Date: Sat, 25 Jan 2025 04:18:08 GMT
- Title: CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs
- Authors: Yuntong Hu, Zhihan Lei, Zhongjie Dai, Allen Zhang, Abhinav Angirekula, Zheng Zhang, Liang Zhao,
- Abstract summary: Contextualized Graph Retrieval-Augmented Generation (CG-RAG) is a novel framework that integrates sparse and dense retrieval signals within graph structures.
First, we propose a contextual graph representation for citation graphs, effectively capturing both explicit and implicit connections within and across documents.
Second, we introduce Lexical-Semantic Graph Retrieval (LeSeGR), which seamlessly integrates sparse and dense retrieval signals with graph encoding.
Third, we present a context-aware generation strategy that utilizes the retrieved graph-structured information to generate precise and contextually enriched responses.
- Score: 9.718354494802002
- License:
- Abstract: Research question answering requires accurate retrieval and contextual understanding of scientific literature. However, current Retrieval-Augmented Generation (RAG) methods often struggle to balance complex document relationships with precise information retrieval. In this paper, we introduce Contextualized Graph Retrieval-Augmented Generation (CG-RAG), a novel framework that integrates sparse and dense retrieval signals within graph structures to enhance retrieval efficiency and subsequently improve generation quality for research question answering. First, we propose a contextual graph representation for citation graphs, effectively capturing both explicit and implicit connections within and across documents. Next, we introduce Lexical-Semantic Graph Retrieval (LeSeGR), which seamlessly integrates sparse and dense retrieval signals with graph encoding. It bridges the gap between lexical precision and semantic understanding in citation graph retrieval, demonstrating generalizability to existing graph retrieval and hybrid retrieval methods. Finally, we present a context-aware generation strategy that utilizes the retrieved graph-structured information to generate precise and contextually enriched responses using large language models (LLMs). Extensive experiments on research question answering benchmarks across multiple domains demonstrate that our CG-RAG framework significantly outperforms RAG methods combined with various state-of-the-art retrieval approaches, delivering superior retrieval accuracy and generation quality.
Related papers
- TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAG is a novel framework that enhances acRAG from three perspectives: indexing, retrieval, and generation.
We open-source the TrustRAG framework and provide a demonstration studio designed for excerpt-based question answering tasks.
arXiv Detail & Related papers (2025-02-19T13:45:27Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.
We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)
We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.
Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.
Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - DynaGRAG | Exploring the Topology of Information for Advancing Language Understanding and Generation in Graph Retrieval-Augmented Generation [0.0]
A novel GRAG framework, Dynamic Graph Retrieval-Agumented Generation (DynaGRAG), is proposed to focus on enhancing subgraph representation and diversity within the knowledge graph.
Experimental results demonstrate the effectiveness of DynaGRAG, showcasing the significance of enhanced subgraph representation and diversity for improved language understanding and generation.
arXiv Detail & Related papers (2024-12-24T16:06:53Z) - SimGRAG: Leveraging Similar Subgraphs for Knowledge Graphs Driven Retrieval-Augmented Generation [6.568733377722896]
We propose a novel Similar Graph Enhanced Retrieval-Augmented Generation (SimGRAG) method.
It effectively addresses the challenge of aligning query texts and knowledge graphs.
SimGRAG outperforms state-of-the-art KG-driven RAG methods in question answering and fact verification.
arXiv Detail & Related papers (2024-12-17T15:40:08Z) - G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAG integrates graph databases to enhance the retrieval process.
We implement an agent-based parsing technique to achieve a more detailed representation of the documents.
arXiv Detail & Related papers (2024-11-21T21:22:58Z) - GRAG: Graph Retrieval-Augmented Generation [14.98084919101233]
Graph Retrieval-Augmented Generation (GRAG) tackles the fundamental challenges in retrieving textual subgraphs.
We propose a novel divide-and-conquer strategy that retrieves the optimal subgraph structure in linear time.
Our approach significantly outperforms current state-of-the-art RAG methods.
arXiv Detail & Related papers (2024-05-26T10:11:40Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
We focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.
Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.
Motivated by this, we propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available.
arXiv Detail & Related papers (2022-12-08T11:53:12Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.