PatentLMM: Large Multimodal Model for Generating Descriptions for Patent Figures
- URL: http://arxiv.org/abs/2501.15074v1
- Date: Sat, 25 Jan 2025 04:45:32 GMT
- Title: PatentLMM: Large Multimodal Model for Generating Descriptions for Patent Figures
- Authors: Shreya Shukla, Nakul Sharma, Manish Gupta, Anand Mishra,
- Abstract summary: We introduce PatentDesc-355K, a novel large-scale dataset containing 355K patent figures along with their brief and detailed textual descriptions.
We also propose PatentLMM - a novel multimodal large language model specifically tailored to generate high-quality descriptions of patent figures.
Our proposed PatentLMM comprises two key components: (i) PatentMME, a specialized multimodal vision encoder that captures the unique structural elements of patent figures, and (ii) PatentLLaMA, a domain-adapted version of LLaMA fine-tuned on a large collection of patents.
- Score: 7.16446145782558
- License:
- Abstract: Writing comprehensive and accurate descriptions of technical drawings in patent documents is crucial to effective knowledge sharing and enabling the replication and protection of intellectual property. However, automation of this task has been largely overlooked by the research community. To this end, we introduce PatentDesc-355K, a novel large-scale dataset containing ~355K patent figures along with their brief and detailed textual descriptions extracted from more than 60K US patent documents. In addition, we propose PatentLMM - a novel multimodal large language model specifically tailored to generate high-quality descriptions of patent figures. Our proposed PatentLMM comprises two key components: (i) PatentMME, a specialized multimodal vision encoder that captures the unique structural elements of patent figures, and (ii) PatentLLaMA, a domain-adapted version of LLaMA fine-tuned on a large collection of patents. Extensive experiments demonstrate that training a vision encoder specifically designed for patent figures significantly boosts the performance, generating coherent descriptions compared to fine-tuning similar-sized off-the-shelf multimodal models. PatentDesc-355K and PatentLMM pave the way for automating the understanding of patent figures, enabling efficient knowledge sharing and faster drafting of patent documents. We make the code and data publicly available.
Related papers
- AutoPatent: A Multi-Agent Framework for Automatic Patent Generation [16.862811929856313]
We introduce a novel and practical task known as Draft2Patent, along with its corresponding D2P benchmark, which challenges Large Language Models to generate full-length patents averaging 17K tokens based on initial drafts.
We propose a multi-agent framework called AutoPatent which leverages the LLM-based planner agent, writer agents, and examiner agent with PGTree and RRAG to generate lengthy, intricate, and high-quality complete patent documents.
arXiv Detail & Related papers (2024-12-13T02:27:34Z) - The Master-Slave Encoder Model for Improving Patent Text Summarization: A New Approach to Combining Specifications and Claims [4.0394257829385065]
We propose a patent text abstract generation model (MSEA) based on a master-slave encoder architecture.
On a publicly available patent text dataset, the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively.
arXiv Detail & Related papers (2024-11-21T12:36:19Z) - PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
We introduce the PatentEdits dataset, which contains 105K examples of successful revisions.
We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models.
We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art.
arXiv Detail & Related papers (2024-11-20T17:23:40Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
Retrieval-augmented generation (RAG) can supplement large language models (LLMs) by integrating external knowledge.
This paper presents BRIEF, a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models [55.903148392998965]
We introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities.
The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks.
We evaluate 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities.
arXiv Detail & Related papers (2024-10-13T05:26:36Z) - PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents [58.35492519636351]
PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities.
We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources.
arXiv Detail & Related papers (2024-06-20T01:43:08Z) - Natural Language Processing in Patents: A Survey [0.0]
Patents, encapsulating crucial technical and legal information, present a rich domain for natural language processing (NLP) applications.
As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks.
This paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently.
arXiv Detail & Related papers (2024-03-06T23:17:16Z) - PaECTER: Patent-level Representation Learning using Citation-informed
Transformers [0.16785092703248325]
PaECTER is a publicly available, open-source document-level encoder specific for patents.
We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents.
PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain.
arXiv Detail & Related papers (2024-02-29T18:09:03Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - MMAPS: End-to-End Multi-Grained Multi-Modal Attribute-Aware Product
Summarization [93.5217515566437]
Multi-modal Product Summarization (MPS) aims to increase customers' desire to purchase by highlighting product characteristics.
Existing MPS methods can produce promising results, but they still lack end-to-end product summarization.
We propose an end-to-end multi-modal attribute-aware product summarization method (MMAPS) for generating high-quality product summaries in e-commerce.
arXiv Detail & Related papers (2023-08-22T11:00:09Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
We introduce the Harvard USPTO Patent dataset (HUPD)
With more than 4.5 million patent documents, HUPD is two to three times larger than comparable corpora.
By providing each application's metadata along with all of its text fields, the dataset enables researchers to perform new sets of NLP tasks.
arXiv Detail & Related papers (2022-07-08T17:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.