The Master-Slave Encoder Model for Improving Patent Text Summarization: A New Approach to Combining Specifications and Claims
- URL: http://arxiv.org/abs/2411.14072v1
- Date: Thu, 21 Nov 2024 12:36:19 GMT
- Title: The Master-Slave Encoder Model for Improving Patent Text Summarization: A New Approach to Combining Specifications and Claims
- Authors: Shu Zhou, Xin Wang, Zhengda Zhou, Haohan Yi, Xuhui Zheng, Hao Wan,
- Abstract summary: We propose a patent text abstract generation model (MSEA) based on a master-slave encoder architecture.
On a publicly available patent text dataset, the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively.
- Score: 4.0394257829385065
- License:
- Abstract: In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by rapid patent updates, and the problem of information redundancy caused by insufficient consideration of the high professionalism, accuracy, and uniqueness of patent texts, we proposes a patent text abstract generation model (MSEA) based on a master-slave encoder architecture; Firstly, the MSEA model designs a master-slave encoder, which combines the instructions in the patent text with the claims as input, and fully explores the characteristics and details between the two through the master-slave encoder; Then, the model enhances the consideration of new technical terms in the input sequence based on the pointer network, and further enhances the correlation with the input text by re weighing the "remembered" and "for-gotten" parts of the input sequence from the encoder; Finally, an enhanced repetition suppression mechanism for patent text was introduced to ensure accurate and non redundant abstracts generated. On a publicly available patent text dataset, compared to the state-of-the-art model, Improved Multi-Head Attention Mechanism (IMHAM), the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively. MSEA leverages the characteristics of patent texts to effectively enhance the quality of patent text generation, demonstrating its advancement and effectiveness in the experiments.
Related papers
- Can AI Examine Novelty of Patents?: Novelty Evaluation Based on the Correspondence between Patent Claim and Prior Art [5.655276956391884]
This paper introduces a novel challenge by evaluating the ability of large language models (LLMs) to assess patent novelty.
We present the first dataset specifically designed for novelty evaluation, derived from real patent examination cases.
Our study reveals that while classification models struggle to effectively assess novelty, generative models make predictions with a reasonable level of accuracy.
arXiv Detail & Related papers (2025-02-10T10:09:29Z) - PatentLMM: Large Multimodal Model for Generating Descriptions for Patent Figures [7.16446145782558]
We introduce PatentDesc-355K, a novel large-scale dataset containing 355K patent figures along with their brief and detailed textual descriptions.
We also propose PatentLMM - a novel multimodal large language model specifically tailored to generate high-quality descriptions of patent figures.
Our proposed PatentLMM comprises two key components: (i) PatentMME, a specialized multimodal vision encoder that captures the unique structural elements of patent figures, and (ii) PatentLLaMA, a domain-adapted version of LLaMA fine-tuned on a large collection of patents.
arXiv Detail & Related papers (2025-01-25T04:45:32Z) - PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
We introduce the PatentEdits dataset, which contains 105K examples of successful revisions.
We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models.
We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art.
arXiv Detail & Related papers (2024-11-20T17:23:40Z) - ClaimBrush: A Novel Framework for Automated Patent Claim Refinement Based on Large Language Models [3.3427063846107825]
ClaimBrush is a novel framework for automated patent claim refinement that includes a dataset and a rewriting model.
We constructed a dataset for training and evaluating patent claim rewriting models by collecting a large number of actual patent claim rewriting cases.
Our proposed rewriting model outperformed baselines and zero-shot learning in state-of-the-art large language models.
arXiv Detail & Related papers (2024-10-08T00:20:54Z) - Towards Automated Patent Workflows: AI-Orchestrated Multi-Agent Framework for Intellectual Property Management and Analysis [0.0]
PatExpert is an autonomous multi-agent conversational framework designed to streamline and optimize patent-related tasks.
The framework consists of a metaagent that coordinates task-specific expert agents for various patent-related tasks and a critique agent for error handling and feedback provision.
arXiv Detail & Related papers (2024-09-21T13:44:34Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - JAMDEC: Unsupervised Authorship Obfuscation using Constrained Decoding
over Small Language Models [53.83273575102087]
We propose an unsupervised inference-time approach to authorship obfuscation.
We introduce JAMDEC, a user-controlled, inference-time algorithm for authorship obfuscation.
Our approach builds on small language models such as GPT2-XL in order to help avoid disclosing the original content to proprietary LLM's APIs.
arXiv Detail & Related papers (2024-02-13T19:54:29Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - A Survey on Sentence Embedding Models Performance for Patent Analysis [0.0]
We propose a standard library and dataset for assessing the accuracy of embeddings models based on PatentSBERTa approach.
Results show PatentSBERTa, Bert-for-patents, and TF-IDF Weighted Word Embeddings have the best accuracy for computing sentence embeddings at the subclass level.
arXiv Detail & Related papers (2022-04-28T12:04:42Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.