論文の概要: Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems?
- arxiv url: http://arxiv.org/abs/2501.15081v1
- Date: Sat, 25 Jan 2025 05:19:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:09.462540
- Title: Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems?
- Title(参考訳): 大規模言語モデルは組合せ問題に対するブラックボックス進化最適化として信頼できるか?
- Authors: Jie Zhao, Tao Wen, Kang Hao Cheong,
- Abstract要約: LLM(Large Language Models)は、幅広い知識でゲームを変えるソリューションを提供し、最適化のパラダイムを民主化することができる。
したがって、LLMの適合性を進化機構(EVO)として評価することが不可欠である。
- 参考スコア(独自算出の注目度): 8.082897040940447
- License:
- Abstract: Evolutionary computation excels in complex optimization but demands deep domain knowledge, restricting its accessibility. Large Language Models (LLMs) offer a game-changing solution with their extensive knowledge and could democratize the optimization paradigm. Although LLMs possess significant capabilities, they may not be universally effective, particularly since evolutionary optimization encompasses multiple stages. It is therefore imperative to evaluate the suitability of LLMs as evolutionary optimizer (EVO). Thus, we establish a series of rigid standards to thoroughly examine the fidelity of LLM-based EVO output in different stages of evolutionary optimization and then introduce a robust error-correction mechanism to mitigate the output uncertainty. Furthermore, we explore a cost-efficient method that directly operates on entire populations with excellent effectiveness in contrast to individual-level optimization. Through extensive experiments, we rigorously validate the performance of LLMs as operators targeted for combinatorial problems. Our findings provide critical insights and valuable observations, advancing the understanding and application of LLM-based optimization.
- Abstract(参考訳): 進化的計算は複雑な最適化に優れるが、深いドメイン知識を必要とし、アクセシビリティを制限する。
LLM(Large Language Models)は、幅広い知識でゲームを変えるソリューションを提供し、最適化のパラダイムを民主化することができる。
LLMは重要な能力を持っているが、特に進化的最適化は複数の段階を含むため、普遍的に効果的ではないかもしれない。
したがって、LLMの適合性を進化最適化器(EVO)として評価することが不可欠である。
そこで我々は,LLMに基づくEVO出力の精度を進化的最適化の異なる段階において徹底的に検証し,出力の不確実性を緩和する頑健な誤り訂正機構を導入するために,一連の厳密な基準を確立する。
さらに, 個人レベルの最適化とは対照的に, 全人口で直接運用するコスト効率のよい手法について検討する。
大規模な実験を通じて,組合せ問題に対する演算子としてのLLMの性能を厳格に検証した。
本研究は,LLMに基づく最適化の理解と適用を推し進める上で,重要な洞察と貴重な観察を提供するものである。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Exploring the True Potential: Evaluating the Black-box Optimization Capability of Large Language Models [32.859634302766146]
大規模言語モデル (LLM) は自然言語処理タスクにおいて例外的な性能を示した。
本稿では,LLMの最適化の可能性について深い知見を提供する。
本研究は,LLMの最適化における限界と利点を明らかにした。
論文 参考訳(メタデータ) (2024-04-09T13:17:28Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
大規模言語モデル(LLM)は、顕著な推論能力を示している。
本稿では,LLMが様々なシナリオにまたがるゼロショット最適化能力を有していることを主張する。
LLMを用いた数値最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T13:57:37Z) - How Multimodal Integration Boost the Performance of LLM for
Optimization: Case Study on Capacitated Vehicle Routing Problems [33.33996058215666]
大規模言語モデル(LLM)は、複雑な最適化課題に対処するための有能なツールとして自らを位置づけている。
テキストと視覚の両方のプロンプトを処理可能なマルチモーダルLLMを用いて最適化性能を向上させることを提案する。
論文 参考訳(メタデータ) (2024-03-04T06:24:21Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
我々は,LLMに基づくPrompt Optimizationの実際のメカニズムを明らかにするために研究を行っている。
以上の結果から, LLMは, 反射中の誤差の真の原因を特定するのに苦慮し, 自己の事前知識に偏っていることが明らかとなった。
我々は、より制御可能な方法でターゲットモデルの振舞いを直接最適化する新しい「自動振舞い最適化」パラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-03T09:48:54Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
本稿では,大言語モデル(LLM)を進化論として初めて研究する。
主な利点は、最小限のドメイン知識と人間の努力が必要であり、モデルに追加のトレーニングは必要ありません。
また,進化探索における自己適応機構の有効性についても検討した。
論文 参考訳(メタデータ) (2023-10-29T15:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。