論文の概要: Task-KV: Task-aware KV Cache Optimization via Semantic Differentiation of Attention Heads
- arxiv url: http://arxiv.org/abs/2501.15113v1
- Date: Sat, 25 Jan 2025 07:28:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:25.148848
- Title: Task-KV: Task-aware KV Cache Optimization via Semantic Differentiation of Attention Heads
- Title(参考訳): Task-KV: 意味的アテンションヘッドの微分によるタスク対応KVキャッシュ最適化
- Authors: Xingyang He, Jie Liu, Shaowei Chen,
- Abstract要約: KVキャッシュは、大規模言語モデル(LLM)の推論に広く使われている手法である。
これまでの研究では、すべての注意頭に対して同じ数の重要でないトークンを除去するか、または事前に特定された注意頭に対して区別されたKVキャッシュ予算を割り当てることによって、KVキャッシュのサイズを縮小してきた。
本稿では,様々なタスクに分散KVキャッシュ予算を割り当てるために,アテンションヘッドのセマンティックな分化を利用するTask-KVを提案する。
- 参考スコア(独自算出の注目度): 4.797407445026818
- License:
- Abstract: KV cache is a widely used acceleration technique for large language models (LLMs) inference. However, its memory requirement grows rapidly with input length. Previous studies have reduced the size of KV cache by either removing the same number of unimportant tokens for all attention heads or by allocating differentiated KV cache budgets for pre-identified attention heads. However, due to the importance of attention heads varies across different tasks, the pre-identified attention heads fail to adapt effectively to various downstream tasks. To address this issue, we propose Task-KV, a method that leverages the semantic differentiation of attention heads to allocate differentiated KV cache budgets across various tasks. We demonstrate that attention heads far from the semantic center (called heterogeneous heads) make an significant contribution to task outputs and semantic understanding. In contrast, other attention heads play the role of aggregating important information and focusing reasoning. Task-KV allocates full KV cache budget to heterogeneous heads to preserve comprehensive semantic information, while reserving a small number of recent tokens and attention sinks for non-heterogeneous heads. Furthermore, we innovatively introduce middle activations to preserve key contextual information aggregated from non-heterogeneous heads. To dynamically perceive semantic differences among attention heads, we design a semantic separator to distinguish heterogeneous heads from non-heterogeneous ones based on their distances from the semantic center. Experimental results on multiple benchmarks and different model architectures demonstrate that Task-KV significantly outperforms existing baseline methods.
- Abstract(参考訳): KVキャッシュは、大規模言語モデル(LLM)の推論に広く用いられている加速手法である。
しかし、メモリ要求は入力長とともに急速に増大する。
これまでの研究では、すべての注意頭に対して同じ数の重要でないトークンを除去するか、または事前に特定された注意頭に対して区別されたKVキャッシュ予算を割り当てることによって、KVキャッシュのサイズを縮小してきた。
しかし、注目ヘッドの重要性はタスクによって異なるため、事前認識された注意ヘッドは様々な下流タスクに効果的に適応できない。
この問題に対処するために,様々なタスクにまたがるKVキャッシュ予算を割り当てるために,アテンションヘッドのセマンティックな分化を利用するTask-KVを提案する。
意味中心から遠く離れた注意(異種頭部)がタスクの出力や意味理解に重要な貢献をすることを示す。
対照的に、他の注意頭は重要な情報と集中的推論を集約する役割を担っている。
Task-KVは完全なKVキャッシュ予算をヘテロジニアスヘッドに割り当て、包括的セマンティック情報を保存すると同時に、最近の少数のトークンと非ヘテロジニアスヘッドに対するアテンションシンクを保存する。
さらに、不均一な頭部から集約された重要な文脈情報を保存するために、中間アクティベーションを革新的に導入する。
本研究では,意味中心からの距離に基づいて,非異種頭部と非異種頭部を区別する意味分離器を設計する。
複数のベンチマークと異なるモデルアーキテクチャの実験結果は、Task-KVが既存のベースラインメソッドよりも大幅に優れていることを示している。
関連論文リスト
- AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
本稿では,最初の学習に基づくクリティカルトークン識別手法であるAttentionPredictorを提案する。
注意予測器は、無視可能なメモリを消費しながら、注意スコアを正確に予測する。
また、トークン時間オーバーヘッドを隠蔽してデコードステージを高速化する、クロストークンクリティカルキャッシュプリフェッチフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - Cross-Self KV Cache Pruning for Efficient Vision-Language Inference [19.062950348441426]
KVキャッシュプルーニングは、長文自動回帰生成におけるメモリと計算コストを削減するための有望な手法として登場した。
我々は、注意スコアをモダリティ内注意(同じモダリティ)とモダリティ間注意(全体モダリティ)に分解することを提案する。
最終的なトレーニング不要手法である textbfCross-textbfSelf textbfPruning (CSP) は、完全なKVキャッシュを持つモデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-05T22:47:17Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning [19.942402563256962]
キーバリューキャッシング(キーバリューキャッシング、英: Key-Value cache)は、大規模言語モデル(LLM)の計算効率を高めるための一般的な手法である。
本稿では,新たな文脈推論能力推定手法であるヘッドKVとヘッドKV-R2を提案する。
本手法は,文脈質問応答ベンチマークにおいて,全KVキャッシュの性能の97%を達成しつつ,KVキャッシュの1.5%しか保持しない。
論文 参考訳(メタデータ) (2024-10-25T02:22:00Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - RazorAttention: Efficient KV Cache Compression Through Retrieval Heads [11.708388082001074]
トークン情報を全て保存するキーバリューキャッシュのための新しい圧縮手法を提案する。
RazorAttentionは、パフォーマンスに顕著な影響を与えずに、KVキャッシュサイズを70%以上削減する。
論文 参考訳(メタデータ) (2024-07-22T01:12:23Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z) - Finding the Pillars of Strength for Multi-Head Attention [35.556186723898485]
最近の研究は、MHA(Multi-Head Attention)の問題を明らかにしている。
我々は,グループ・アテンション・ヘッドを用いた自己監督型グループ・制約によって訓練されたグループ・ヘッド・アテンションを提案する。
また、冗長なヘッドを除去するVoting-to-Stay法を提案し、より軽量なトランスを実現する。
論文 参考訳(メタデータ) (2023-05-22T03:44:44Z) - A Dynamic Head Importance Computation Mechanism for Neural Machine
Translation [22.784419165117512]
複数のアテンションヘッドを使用する並列アテンション機構は、様々な用途でTransformerモデルの性能を向上させる。
本研究では,入力に対する頭部の重要度を動的に計算する動的頭部重要度計算機構(DHICM)の設計に焦点をあてる。
モデルがすべてのヘッドに同じスコアを割り当てることを防ぐために、余分な損失関数を追加し、より重要なヘッドを特定し、パフォーマンスを即興で向上する。
論文 参考訳(メタデータ) (2021-08-03T09:16:55Z) - Low-Rank Bottleneck in Multi-head Attention Models [74.83235382203604]
現在のアーキテクチャにおけるヘッド数とヘッドサイズの間のスケーリングは、注目ヘッドの低ランクボトルネックを引き起こします。
本稿では,アテンションユニットの頭部サイズを入力シーケンス長に設定し,ヘッド数に依存しないようにすることを提案する。
論文 参考訳(メタデータ) (2020-02-17T16:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。