論文の概要: Think Small, Plan Smart: Minimalist Symbolic Abstraction and Heuristic Subspace Search for LLM-Guided Task Planning
- arxiv url: http://arxiv.org/abs/2501.15214v2
- Date: Sun, 14 Sep 2025 14:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 15:23:15.93524
- Title: Think Small, Plan Smart: Minimalist Symbolic Abstraction and Heuristic Subspace Search for LLM-Guided Task Planning
- Title(参考訳): LLM誘導タスク計画のためのミニマリスト記号抽象とヒューリスティック部分空間探索
- Authors: Junfeng Tang, Yuping Yan, Zihan Ye, Zhenshou, Song, Zeqi Zheng, Yaochu Jin,
- Abstract要約: 大規模言語モデル(LLM)は、複雑で曖昧な自然言語命令を実行可能な計画に変換するための有望なインターフェースを提供する。
最近のフレームワークは、まずアクションモデル(Planning Domain Definition Language)を生成し、次に検索を適用することで、LCMとシンボリックプランナーを組み合わせる。
抽象的シンボル表現とメタヒューリスティックな部分空間探索を並列かつ反復的に統合する2段階のLLMシンボリック計画フレームワークPLAHXを提案する。
- 参考スコア(独自算出の注目度): 19.421916137269275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable task planning is pivotal for achieving long-horizon autonomy in real-world robotic systems. Large language models (LLMs) offer a promising interface for translating complex and ambiguous natural language instructions into actionable plans. However, their probabilistic and opaque nature often leads to logically inconsistent or infeasible outputs. To address these limitations, recent frameworks combine LLMs with symbolic planners by first generating action models (Planning Domain Definition Language) and then applying heuristic search. Although promising, such systems still suffer from representation redundancy and exponential search complexity, often resulting in inefficient or overly long plans. To improve planning efficiency and effectiveness, we propose PLAHX (Planning from Language using Abstraction and Heuristic eXploration), a two-stage LLM-symbolic planning framework that integrates abstract symbolic representations with meta-heuristic subspace search in a parallel and iterative fashion. Rather than relying on verbose LLM-generated domain models, we introduce a minimalist symbolic abstraction pipeline that preserves semantic fidelity while eliminating redundancy. Our approach redefines LLM-symbolic planning not by making LLMs smarter, but by reducing the symbolic search space adaptively. Empirical results across four challenging domains, including block stacking and robotic mobile grasping, show that our approach improves the success rate by 21.47% on average, while reducing token consumption by 13% compared to state-of-the-art baselines.
- Abstract(参考訳): 信頼性の高いタスクプランニングは、現実世界のロボットシステムにおいて、長期の自律性を達成する上で重要である。
大規模言語モデル(LLM)は、複雑で曖昧な自然言語命令を実行可能な計画に変換するための有望なインターフェースを提供する。
しかし、その確率的かつ不透明な性質はしばしば論理的に矛盾するあるいは不可能な出力をもたらす。
これらの制限に対処するため、最近のフレームワークは、まずアクションモデル(Planning Domain Definition Language)を生成し、ヒューリスティック検索を適用することで、LLMとシンボリックプランナーを組み合わせる。
有望ではあるが、これらのシステムは依然として表現冗長性と指数探索の複雑さに悩まされており、しばしば非効率または過度に長い計画をもたらす。
抽象的シンボル表現とメタヒューリスティックな部分空間探索を並列かつ反復的に統合する2段階のLLMシンボル計画フレームワークであるPLAHX(Planning from Language using Abstraction and Heuristic eXploration)を提案する。
冗長なLLM生成ドメインモデルに頼るのではなく、冗長性を排除しつつ意味的忠実性を保った最小限のシンボル抽象パイプラインを導入する。
提案手法は, LLMをよりスマートにするのではなく, シンボル検索空間を適応的に削減することで, LLM-シンボル計画を再定義する。
ブロック積み重ねやロボットモバイルの把握を含む,4つの課題領域にわたる実証的な結果から,私たちのアプローチは,最先端のベースラインに比べてトークン使用率を13%削減しつつ,平均21.47%向上することが示された。
関連論文リスト
- Large Language Models as Common-Sense Heuristics [0.9093413254392775]
大規模言語モデル(LLM)は、幅広いトピックにまたがるパラメトリドな知識を持ち、彼らのソリューションにおける計画タスクの自然言語記述を活用できる。
本研究では,LLMのパラメトリド知識をヒルクライミングサーチの出力として利用することにより,新たな計画手法を提案する。
提案手法は,共通住宅環境における類似システムのタスク成功率を22ポイント向上させ,一貫した計画を立てる。
論文 参考訳(メタデータ) (2025-01-31T00:26:38Z) - Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation [8.180994118420053]
Nl2Hltl2Planは自然言語コマンドを階層線形時間論理(LTL)に変換するフレームワーク
まず、LLMは命令を階層的なタスクツリーに変換し、論理的および時間的関係をキャプチャする。
次に、微調整されたLLMは、サブタスクをフラットな公式に変換し、階層的な仕様に集約する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
大規模言語モデルに基づくエージェントが注目され、ますます人気が高まっている。
計画能力は LLM ベースのエージェントの重要な構成要素であり、通常は初期状態から望ましい目標を達成する必要がある。
近年の研究では、専門家レベルの軌跡を指導訓練用LLMに活用することで、効果的に計画能力を向上させることが示されている。
論文 参考訳(メタデータ) (2024-08-01T17:59:46Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models [5.385540718118656]
大規模言語モデル(LLM)に基づく新しいタスク計画手法であるDELTAを紹介する。
シーングラフをLLM内の環境表現として使用することにより、DELTAは正確な計画問題記述を迅速に生成する。
DELTAは効率的かつ完全に自動化されたタスク計画パイプラインを実現し、高い計画成功率と、最先端技術と比較して計画時間を大幅に短縮できることを示す。
論文 参考訳(メタデータ) (2024-04-04T07:59:24Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
この研究は、複雑な計画問題の解決におけるLLMの能力に光を当てようとしている。
この文脈で LLM を使用するための最も効果的なアプローチに関する洞察を提供する。
論文 参考訳(メタデータ) (2023-05-25T15:21:09Z) - Learning to Plan with Natural Language [111.76828049344839]
大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示している。
複雑なタスクを完了するためには、ステップごとに特定のソリューションを生成するためにLCMをガイドするタスクの計画が必要です。
本研究では,(1)第1学習課題計画フェーズにおいて,LCMが学習エラーフィードバックから導出するように促した新たなステップバイステップのソリューションと行動指示を用いてタスク計画を反復的に更新する,という2つの段階を含む学習計画手法を提案する。
論文 参考訳(メタデータ) (2023-04-20T17:09:12Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。