論文の概要: DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.03275v2
- Date: Fri, 13 Sep 2024 14:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 23:17:21.086673
- Title: DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models
- Title(参考訳): DELTA:大規模言語モデルを用いた分割型長期ロボットタスク計画
- Authors: Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, Marco Aiello,
- Abstract要約: 大規模言語モデル(LLM)に基づく新しいタスク計画手法であるDELTAを紹介する。
シーングラフをLLM内の環境表現として使用することにより、DELTAは正確な計画問題記述を迅速に生成する。
DELTAは効率的かつ完全に自動化されたタスク計画パイプラインを実現し、高い計画成功率と、最先端技術と比較して計画時間を大幅に短縮できることを示す。
- 参考スコア(独自算出の注目度): 5.385540718118656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have sparked a revolution across many research fields. In robotics, the integration of common-sense knowledge from LLMs into task and motion planning has drastically advanced the field by unlocking unprecedented levels of context awareness. Despite their vast collection of knowledge, large language models may generate infeasible plans due to hallucinations or missing domain information. To address these challenges and improve plan feasibility and computational efficiency, we introduce DELTA, a novel LLM-informed task planning approach. By using scene graphs as environment representations within LLMs, DELTA achieves rapid generation of precise planning problem descriptions. To enhance planning performance, DELTA decomposes long-term task goals with LLMs into an autoregressive sequence of sub-goals, enabling automated task planners to efficiently solve complex problems. In our extensive evaluation, we show that DELTA enables an efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は多くの研究分野に革命をもたらした。
ロボット工学において、LLMからの常識的知識をタスクと運動計画に統合することは、前例のないレベルの文脈認識を解き放つことによって、分野を劇的に進歩させてきた。
膨大な知識の収集にもかかわらず、大きな言語モデルは幻覚やドメイン情報の欠落によって実現不可能な計画を生成する可能性がある。
これらの課題に対処し、計画の実現性と計算効率を向上させるために、新しいLCMインフォームドタスク計画手法であるDELTAを導入する。
シーングラフをLLM内の環境表現として使用することにより、DELTAは正確な計画問題記述を迅速に生成する。
計画性能を向上させるため、DELTAはLLMによる長期タスク目標を自己回帰的なサブゴール列に分解し、自動タスクプランナーが複雑な問題を効率的に解決できるようにする。
本評価では,DELTAにより,効率的な完全自動タスク計画パイプラインの実現が可能であり,計画成功率の向上と,最先端技術と比較して計画時間の短縮が図られている。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
長期計画には不確実性蓄積、計算複雑性、遅延報酬、不完全情報といった課題が伴う。
本研究では,タスク階層を人間の指示から活用し,マルチロボット計画を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
LLM(Large Language Models)の固有の確率論的性質は、予測不可能な要素を導入している。
本稿では,多様な現実の要求やシナリオに対して,適切なロボットタスク計画を作成することを目的とした,革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-15T18:01:59Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。