論文の概要: Predictive Lagrangian Optimization for Constrained Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.15217v1
- Date: Sat, 25 Jan 2025 13:39:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:53:55.096578
- Title: Predictive Lagrangian Optimization for Constrained Reinforcement Learning
- Title(参考訳): 制約付き強化学習のための予測ラグランジアン最適化
- Authors: Tianqi Zhang, Puzhen Yuan, Guojian Zhan, Ziyu Lin, Yao Lyu, Zhenzhi Qin, Jingliang Duan, Liping Zhang, Shengbo Eben Li,
- Abstract要約: 制約付き最適化は、複雑な制御タスクに対処するための強化学習で一般的に見られる。
本稿では,制約付き最適化とフィードバック制御システムとの接続を構築するための,より汎用的な等価フレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.082498910832529
- License:
- Abstract: Constrained optimization is popularly seen in reinforcement learning for addressing complex control tasks. From the perspective of dynamic system, iteratively solving a constrained optimization problem can be framed as the temporal evolution of a feedback control system. Classical constrained optimization methods, such as penalty and Lagrangian approaches, inherently use proportional and integral feedback controllers. In this paper, we propose a more generic equivalence framework to build the connection between constrained optimization and feedback control system, for the purpose of developing more effective constrained RL algorithms. Firstly, we define that each step of the system evolution determines the Lagrange multiplier by solving a multiplier feedback optimal control problem (MFOCP). In this problem, the control input is multiplier, the state is policy parameters, the dynamics is described by policy gradient descent, and the objective is to minimize constraint violations. Then, we introduce a multiplier guided policy learning (MGPL) module to perform policy parameters updating. And we prove that the resulting optimal policy, achieved through alternating MFOCP and MGPL, aligns with the solution of the primal constrained RL problem, thereby establishing our equivalence framework. Furthermore, we point out that the existing PID Lagrangian is merely one special case within our framework that utilizes a PID controller. We also accommodate the integration of other various feedback controllers, thereby facilitating the development of new algorithms. As a representative, we employ model predictive control (MPC) as the feedback controller and consequently propose a new algorithm called predictive Lagrangian optimization (PLO). Numerical experiments demonstrate its superiority over the PID Lagrangian method, achieving a larger feasible region up to 7.2% and a comparable average reward.
- Abstract(参考訳): 制約付き最適化は、複雑な制御タスクに対処するための強化学習で一般的に見られる。
動的システムの観点からは、制約付き最適化問題を反復的に解くことは、フィードバック制御システムの時間的進化とみなすことができる。
ペナルティやラグランジアンアプローチのような古典的な制約付き最適化手法は、本質的に比例的および積分的なフィードバックコントローラを使用する。
本稿では,より効率的な制約付きRLアルゴリズムの開発を目的とした,制約付き最適化とフィードバック制御システムとの接続を構築するための,より汎用的な等価フレームワークを提案する。
まず,システム進化の各ステップが乗算器フィードバック最適制御問題(MFOCP)を解くことにより,ラグランジュ乗算器を決定することを定義する。
この問題において、制御入力は乗算器であり、状態はポリシーパラメータであり、ダイナミクスはポリシー勾配降下によって記述され、その目的は制約違反を最小限に抑えることである。
次に、ポリシーパラメータの更新を行うために、マルチプライヤ誘導ポリシー学習(MGPL)モジュールを導入する。
そして, MFOCP と MGPL の交互化によって得られた最適政策が, 原始制約付き RL 問題の解と整合し, 等価化の枠組みを確立することを証明した。
さらに、既存のPIDラグランジアンは、PIDコントローラを利用するフレームワーク内の1つの特別なケースに過ぎないことを指摘する。
また,他の各種フィードバックコントローラの統合も可能であり,新たなアルゴリズムの開発が容易になる。
本稿では,モデル予測制御(MPC)をフィードバックコントローラとし,予測ラグランジアン最適化(PLO)と呼ばれる新しいアルゴリズムを提案する。
数値実験により、PIDラグランジアン法よりも優位性が示され、最大7.2%、平均報酬に匹敵する大きな実現可能な領域が達成された。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
モデル予測制御(MP)に基づく軌道計画が広く使われており、制御バリア(CBF)はその制約を改善することができる。
本稿では,CBF-MPC軌道計画のための自己教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-15T09:38:52Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Towards a Theoretical Foundation of Policy Optimization for Learning
Control Policies [26.04704565406123]
グラディエントベースの手法は、様々なアプリケーション領域におけるシステム設計と最適化に広く使われてきた。
近年、制御と強化学習の文脈において、これらの手法の理論的性質の研究に新たな関心が寄せられている。
本稿では、フィードバック制御合成のための勾配に基づく反復的アプローチであるポリシー最適化に関する最近の開発について概説する。
論文 参考訳(メタデータ) (2022-10-10T16:13:34Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
我々は車載OCCにおけるスペクトル効率最適化手法を提案する。
我々は最適化問題をマルコフ決定プロセス(MDP)としてモデル化し、オンラインで適用可能なソリューションの利用を可能にする。
提案手法の性能を広範囲なシミュレーションにより検証し,提案手法の様々な変種とランダムな手法との比較を行った。
論文 参考訳(メタデータ) (2022-05-05T14:25:54Z) - Recurrent Model Predictive Control [19.047059454849897]
一般非線形有限水平最適制御問題を解くために,リカレントモデル予測制御(RMPC)と呼ばれるオフラインアルゴリズムを提案する。
提案アルゴリズムは,システム状態と参照値を直接制御入力にマッピングする最適ポリシを近似するために,繰り返し関数を用いる。
論文 参考訳(メタデータ) (2021-02-23T15:01:36Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
アクション制約強化学習(RL)は、さまざまな現実世界のアプリケーションで広く使用されているアプローチです。
本稿では,政策パラメータ更新から行動制約を分離する学習アルゴリズムを提案する。
提案アルゴリズムは,様々な制御タスクにおけるベンチマーク手法を有意に上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-22T14:28:03Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。