SEAL: Scaling to Emphasize Attention for Long-Context Retrieval
- URL: http://arxiv.org/abs/2501.15225v1
- Date: Sat, 25 Jan 2025 14:09:39 GMT
- Title: SEAL: Scaling to Emphasize Attention for Long-Context Retrieval
- Authors: Changhun Lee, Jun-gyu Jin, Younghyun Cho, Eunhyeok Park,
- Abstract summary: We introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL)
It enhances the retrieval performance of large language models (LLMs) over extended contexts.
- Score: 9.446971590056945
- License:
- Abstract: In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over extended contexts. Previous studies have shown that each attention head in LLMs has a unique functionality and collectively contributes to the overall behavior of the model. Similarly, we observe that specific heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores. Built on this insight, we propose a learning-based mechanism using zero-shot generated data to emphasize these heads, improving the model's performance in long-context retrieval tasks. By applying SEAL, we can achieve significant improvements in in-domain retrieval performance, including document QA tasks from LongBench, and considerable improvements in out-of-domain cases. Additionally, when combined with existing training-free context extension techniques, SEAL extends the context limits of LLMs while maintaining highly reliable outputs, opening new avenues for research in this field.
Related papers
- Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLM is a novel framework for long-context processing.
Unlike traditional methods, RetroLM employs KV-level retrieval augmentation.
Building on this framework, we develop a specialized retriever for precise retrieval of critical pages.
arXiv Detail & Related papers (2025-02-17T05:02:25Z) - Reducing Distraction in Long-Context Language Models by Focused Learning [6.803882766744194]
We propose a novel training method that enhances Large Language Models' ability to discern relevant information.
During fine-tuning with long contexts, we employ a retriever to extract the most relevant segments.
We then introduce an auxiliary contrastive learning objective to explicitly ensure that outputs from the original context and the retrieved sub-context are closely aligned.
arXiv Detail & Related papers (2024-11-08T19:27:42Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
Broad textual understanding and in-context learning require language models that utilize full document contexts.
Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts.
We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data.
arXiv Detail & Related papers (2024-09-18T17:53:17Z) - Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment [16.39696580487218]
Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval.
Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks.
arXiv Detail & Related papers (2024-08-22T08:16:07Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - Benchmarking General-Purpose In-Context Learning [19.40952728849431]
In-context learning (ICL) empowers generative models to address new tasks effectively and efficiently on the fly.
In this paper, we study extending ICL to address a broader range of tasks with an extended learning horizon and higher improvement potential.
We introduce two benchmarks specifically crafted to train and evaluate GPICL functionalities.
arXiv Detail & Related papers (2024-05-27T14:50:42Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
This paper introduces Step-Skipping Alignment (SkipAlign)
It is a new technique designed to enhance the long-context capabilities of Large Language Models (LLMs)
With a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
arXiv Detail & Related papers (2024-05-07T01:56:22Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens.
Our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2.
arXiv Detail & Related papers (2023-09-27T21:41:49Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
Multi-task learning promises better model generalization on a target task by jointly optimizing it with an auxiliary task.
We find that jointly training a dense prediction (target) task with a self-supervised (auxiliary) task can consistently improve the performance of the target task, while eliminating the need for labeling auxiliary tasks.
arXiv Detail & Related papers (2022-10-13T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.