Benchmarking General-Purpose In-Context Learning
- URL: http://arxiv.org/abs/2405.17234v6
- Date: Thu, 12 Sep 2024 15:22:09 GMT
- Title: Benchmarking General-Purpose In-Context Learning
- Authors: Fan Wang, Chuan Lin, Yang Cao, Yu Kang,
- Abstract summary: In-context learning (ICL) empowers generative models to address new tasks effectively and efficiently on the fly.
In this paper, we study extending ICL to address a broader range of tasks with an extended learning horizon and higher improvement potential.
We introduce two benchmarks specifically crafted to train and evaluate GPICL functionalities.
- Score: 19.40952728849431
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In-context learning (ICL) empowers generative models to address new tasks effectively and efficiently on the fly, without relying on any artificially crafted optimization techniques. In this paper, we study extending ICL to address a broader range of tasks with an extended learning horizon and higher improvement potential, namely General Purpose In-Context Learning (GPICL). To this end, we introduce two lightweight benchmarks specifically crafted to train and evaluate GPICL functionalities. Each benchmark encompasses a vast number of tasks characterized by significant task variance. These tasks are also crafted to promote long-horizon in-context learning through continuous generation and interaction, covering domains such as language modeling, decision-making, and world modeling. The benchmarks necessitate the models to leverage contexts and history interactions to enhance their capabilities, which we believe to be the key characteristics of GPICL. Our experiments indicate that the diversity of training tasks is positively correlated with the ability to generalize with ICL, but inversely correlated with zero-shot capabilities. Additionally, our findings indicate that the scale of parameters alone may not be crucial for ICL or GPICL, suggesting alternative approaches such as increasing the scale of contexts and memory states.
Related papers
- Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context learning (ICL) is a cheap and efficient alternative but cannot match the accuracies of advanced methods.
We present Ensemble SuperICL, a novel approach that enhances ICL by leveraging the expertise of multiple fine-tuned small language models (SLMs)
arXiv Detail & Related papers (2024-10-29T09:02:37Z) - Agent Skill Acquisition for Large Language Models via CycleQD [2.749898166276853]
CycleQD is a novel approach that leverages the Quality Diversity framework through a cyclic adaptation of the algorithm.
Each task's performance metric is alternated as the quality measure while the others serve as the behavioral characteristics.
Applying CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to surpass traditional fine-tuning methods in coding, operating systems, and database tasks, but also achieves performance on par with GPT-3.5-TURBO.
arXiv Detail & Related papers (2024-10-16T20:27:15Z) - Investigating the Pre-Training Dynamics of In-Context Learning: Task Recognition vs. Task Learning [99.05401042153214]
In-context learning (ICL) is potentially attributed to two major abilities: task recognition (TR) and task learning (TL)
We take the first step by examining the pre-training dynamics of the emergence of ICL.
We propose a simple yet effective method to better integrate these two abilities for ICL at inference time.
arXiv Detail & Related papers (2024-06-20T06:37:47Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification [0.8232137862012223]
This study investigates the potential of Large Language Models (LLMs) in generating and providing domain-specific information.
To achieve this, an LLM is integrated into a pipeline that utilizes Knowledge Graphs and pre-trained semantic vectors.
Our findings reveal that the integration of LLM-based embeddings, in combination with general-purpose pre-trained embeddings, leads to substantial performance improvements.
arXiv Detail & Related papers (2024-03-18T18:08:44Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.