論文の概要: The Multicultural Medical Assistant: Can LLMs Improve Medical ASR Errors Across Borders?
- arxiv url: http://arxiv.org/abs/2501.15310v1
- Date: Sat, 25 Jan 2025 19:40:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:00.192972
- Title: The Multicultural Medical Assistant: Can LLMs Improve Medical ASR Errors Across Borders?
- Title(参考訳): 多文化医療アシスタント:LLMは国境を越えて医療ASRエラーを改善できるか?
- Authors: Ayo Adedeji, Mardhiyah Sanni, Emmanuel Ayodele, Sarita Joshi, Tobi Olatunji,
- Abstract要約: 本研究は,ナイジェリア,イギリス,米国における医学転写におけるASRエラーの頻度と影響について検討した。
ASRにおけるアクセントや医学用語に関する課題に対処するために,大規模言語モデルの可能性と限界を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The global adoption of Large Language Models (LLMs) in healthcare shows promise to enhance clinical workflows and improve patient outcomes. However, Automatic Speech Recognition (ASR) errors in critical medical terms remain a significant challenge. These errors can compromise patient care and safety if not detected. This study investigates the prevalence and impact of ASR errors in medical transcription in Nigeria, the United Kingdom, and the United States. By evaluating raw and LLM-corrected transcriptions of accented English in these regions, we assess the potential and limitations of LLMs to address challenges related to accents and medical terminology in ASR. Our findings highlight significant disparities in ASR accuracy across regions and identify specific conditions under which LLM corrections are most effective.
- Abstract(参考訳): 医療におけるLarge Language Models(LLM)の世界的な採用は、臨床ワークフローを強化し、患者の成果を改善することを約束している。
しかし、重要な医療用語における自動音声認識(ASR)の誤りは依然として重大な課題である。
これらのエラーは、検出されていない場合、患者のケアと安全性を損なう可能性がある。
本研究は,ナイジェリア,イギリス,米国における医学転写におけるASRエラーの頻度と影響について検討した。
これらの地域でのアクセント付き英語の原文およびLLM訂正転写の評価により,ASRのアクセントや医学用語に関する課題に対処するために,LLMの可能性と限界を評価する。
以上の結果から,地域ごとのASR精度に有意な差がみられ,LSM補正が最も有効である特定の条件が同定された。
関連論文リスト
- Fact or Guesswork? Evaluating Large Language Model's Medical Knowledge with Structured One-Hop Judgment [108.55277188617035]
大規模言語モデル(LLM)は、様々な下流タスクドメインで広く採用されているが、実際の医学的知識を直接呼び起こし適用する能力はいまだ探索されていない。
既存の医療QAベンチマークの多くは、複雑な推論やマルチホップ推論を評価しており、LSM固有の医療知識を推論能力から切り離すことが困難である。
LLMの1ホップの医療知識を測定するために特別に設計されたデータセットであるMedical Knowledge Judgmentを紹介する。
論文 参考訳(メタデータ) (2025-02-20T05:27:51Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs [3.1894617416005855]
大型言語モデル(LLM)は、様々な眼科手術を自動化するための有望なソリューションを提供する。
LLMは、自然言語の問合せタスクにおいて、様々な言語で顕著に異なる性能を示してきた。
本研究は,複数言語にまたがる質問を手作業でキュレートした,最初の多言語眼科的質問答えベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-18T20:18:03Z) - Mitigating the Risk of Health Inequity Exacerbated by Large Language Models [5.02540629164568]
大規模言語モデルの入力に非決定的な社会デマトグラフィー要素を組み込むことは、誤った有害な出力につながる可能性があることを示す。
LLMベースの医療応用における健康不平等のリスクを検知・緩和する新しいフレームワークであるEquityGuardを紹介する。
論文 参考訳(メタデータ) (2024-10-07T16:40:21Z) - Performant ASR Models for Medical Entities in Accented Speech [0.9346027495459037]
我々は、93のアフリカアクセントの英語臨床データセットを用いて、複数のASRモデルを厳格に評価した。
分析の結果, 単語誤り率 (WER) が低いモデルではあるものの, 臨床的実体の誤差は高く, 患者の安全性に重大なリスクが生じる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-18T08:19:48Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - The Sound of Healthcare: Improving Medical Transcription ASR Accuracy
with Large Language Models [0.0]
大言語モデル(LLM)は、医学転写における音声認識システム(ASR)の精度を高めることができる。
本研究は, 単語誤り率(WER), 医用概念WER(MC-WER)の精度向上, 話者ダイアリゼーション精度の向上に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-12T14:01:12Z) - Evaluating Large Language Models for Radiology Natural Language
Processing [68.98847776913381]
大規模言語モデル(LLM)の台頭は、自然言語処理(NLP)分野における重要な転換点となっている。
本研究は, 放射線学報告の解釈において, 30 個の LLM を批判的に評価することにより, このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-07-25T17:57:18Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
大規模言語モデル(LLM)は、医療を含む様々な分野で大きな進歩を遂げている。
本研究では,臨床言語理解タスクの領域における最先端LCMの評価を行った。
論文 参考訳(メタデータ) (2023-04-09T16:31:47Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。