MoLAE: Mixture of Latent Experts for Parameter-Efficient Language Models
- URL: http://arxiv.org/abs/2503.23100v2
- Date: Sun, 25 May 2025 04:35:39 GMT
- Title: MoLAE: Mixture of Latent Experts for Parameter-Efficient Language Models
- Authors: Zehua Liu, Han Wu, Ruifeng She, Xiaojin Fu, Xiongwei Han, Tao Zhong, Mingxuan Yuan,
- Abstract summary: Mixture of Experts (MoE) has become a key architectural paradigm for efficiently scaling Large Language Models (LLMs)<n>We introduce MoLAE, a novel parameterization that reformulating expert operations through a shared projection into a lower-dimensional latent space, followed by expert-specific transformations.<n>We show that MoLAE significantly improves efficiency across multiple dimensions while preserving model capabilities.
- Score: 10.623996218106564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture of Experts (MoE) has become a key architectural paradigm for efficiently scaling Large Language Models (LLMs) by selectively activating a subset of parameters for each input token. However, standard MoE architectures face significant challenges, including high memory consumption and communication overhead during distributed training. In this paper, we introduce Mixture of Latent Experts (MoLAE), a novel parameterization that addresses these limitations by reformulating expert operations through a shared projection into a lower-dimensional latent space, followed by expert-specific transformations. This factorized approach substantially reduces parameter count and computational requirements, particularly in existing LLMs where hidden dimensions significantly exceed MoE intermediate dimensions. We provide a rigorous mathematical framework for transforming pre-trained MoE models into MoLAE architecture, characterizing conditions for optimal factorization, and developing a systematic two-step algorithm for this conversion. Our comprehensive theoretical analysis demonstrates that MoLAE significantly improves efficiency across multiple dimensions while preserving model capabilities. Experimental results confirm that MoLAE achieves comparable performance to standard MoE with substantially reduced resource requirements.
Related papers
- S'MoRE: Structural Mixture of Residual Experts for LLM Fine-tuning [17.579948649237497]
We propose Structural Mixture of Residual Experts (S'MoRE), a novel framework that seamlessly integrates the efficiency of LoRA with the flexibility of MoE.<n>Specifically, S'MoRE employs hierarchical low-rank decomposition of expert weights, yielding residuals of varying orders interconnected in a multi-layer structure.<n>We prove that S'MoRE improves "structural flexibility" of traditional MoE (or Mixture-of-LoRA) by exponential order.
arXiv Detail & Related papers (2025-04-08T20:54:00Z) - Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework [0.0]
This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts architecture.
Our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts.
We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead.
arXiv Detail & Related papers (2025-03-26T17:33:38Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient [4.34286535607654]
We present joint scaling laws for dense and MoE models, incorporating key factors such as the number of active parameters, dataset size, and the number of experts.<n>Surprisingly, we show that MoE models can be more memory-efficient than dense models, contradicting conventional wisdom.
arXiv Detail & Related papers (2025-02-07T18:55:38Z) - MergeME: Model Merging Techniques for Homogeneous and Heterogeneous MoEs [45.20965298945085]
This paper introduces new MoE merging techniques, including strategies to mitigate parameter interference, routings, and a novel method for merging experts with different architectures.<n>Experiments across multiple domains demonstrate the effectiveness of our proposed methods, reducing fine-tuning costs, improving performance over state-of-the-art methods, and expanding the applicability of MoE merging.
arXiv Detail & Related papers (2025-02-03T02:34:46Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Scalable Multi-Domain Adaptation of Language Models using Modular Experts [10.393155077703653]
MoDE is a mixture-of-experts architecture that augments a general PLM with modular, domain-specialized experts.
MoDE achieves comparable target performances to full parameter fine-tuning while achieving 1.65% better retention performance.
arXiv Detail & Related papers (2024-10-14T06:02:56Z) - Retraining-Free Merging of Sparse MoE via Hierarchical Clustering [14.858134039539697]
This paper introduces Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE)<n>HC-SMoE is a task-agnostic expert merging framework for parameter reduction without retraining.<n>We provide theoretical analysis and evaluations across multiple zero-shot language tasks to demonstrate HC-SMoE's effectiveness in state-of-the-art models including Qwen and Mixtral.
arXiv Detail & Related papers (2024-10-11T07:36:14Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
We introduce parameter-efficient sparsity crafting (PESC)
PESC crafts dense models into sparse models using the mixture-of-experts (MoE) architecture.
Our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GP3.5.
arXiv Detail & Related papers (2024-01-05T09:58:09Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.