Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model
- URL: http://arxiv.org/abs/2407.04489v1
- Date: Fri, 5 Jul 2024 13:15:29 GMT
- Title: Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model
- Authors: Duy M. H. Nguyen, An T. Le, Trung Q. Nguyen, Nghiem T. Diep, Tai Nguyen, Duy Duong-Tran, Jan Peters, Li Shen, Mathias Niepert, Daniel Sonntag,
- Abstract summary: We introduce a new framework based on a dual context of both domain-shared and class-specific contexts.
Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in Large Language Models.
We also formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens.
- Score: 27.56988000960972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt learning methods are gaining increasing attention due to their ability to customize large vision-language models to new domains using pre-trained contextual knowledge and minimal training data. However, existing works typically rely on optimizing unified prompt inputs, often struggling with fine-grained classification tasks due to insufficient discriminative attributes. To tackle this, we consider a new framework based on a dual context of both domain-shared and class-specific contexts, where the latter is generated by Large Language Models (LLMs) such as GPTs. Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in LLM knowledge. Moreover, we formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens. Through partial matching, UOT can properly align discrete sets of visual tokens and prompt embeddings under different mass distributions, which is particularly valuable for handling irrelevant or noisy elements, ensuring that the preservation of mass does not restrict transport solutions. Furthermore, UOT's characteristics integrate seamlessly with image augmentation, expanding the training sample pool while maintaining a reasonable distance between perturbed images and prompt inputs. Extensive experiments across few-shot classification and adapter settings substantiate the superiority of our model over current state-of-the-art baselines.
Related papers
- Efficient Transfer Learning for Video-language Foundation Models [13.166348605993292]
We propose a simple yet effective Multi-modal Spatio-supervised (MSTA) to improve the alignment between representations in the text and vision branches.
We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-valiant, and fully-language learning.
arXiv Detail & Related papers (2024-11-18T01:25:58Z) - OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
We propose a novel method to prompt large language models with in-context visual object vectors.
This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training.
Our experiments reveal that our method achieves competitive referring object classification and captioning performance.
arXiv Detail & Related papers (2024-06-02T21:36:31Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
Multi-label image recognition in the low-label regime is a task of great challenge and practical significance.
We leverage the powerful alignment between textual and visual features pretrained with millions of auxiliary image-text pairs.
We introduce an efficient and effective framework called Evidence-guided Dual Context Optimization (DualCoOp++)
arXiv Detail & Related papers (2023-08-03T17:33:20Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.