Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception
- URL: http://arxiv.org/abs/2501.15394v1
- Date: Sun, 26 Jan 2025 04:24:07 GMT
- Title: Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception
- Authors: Lianqing Zheng, Jianan Liu, Runwei Guan, Long Yang, Shouyi Lu, Yuanzhe Li, Xiaokai Bai, Jie Bai, Zhixiong Ma, Hui-Liang Shen, Xichan Zhu,
- Abstract summary: We propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction.
Code and models will be publicly available.
- Score: 9.76463525667238
- License:
- Abstract: 3D object detection and occupancy prediction are critical tasks in autonomous driving, attracting significant attention. Despite the potential of recent vision-based methods, they encounter challenges under adverse conditions. Thus, integrating cameras with next-generation 4D imaging radar to achieve unified multi-task perception is highly significant, though research in this domain remains limited. In this paper, we propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction, enabling comprehensive environmental perception. Specifically, we introduce a novel Coarse Voxel Queries Generator that integrates geometric priors from 4D radar with semantic features from images to initialize voxel queries, establishing a robust foundation for subsequent Transformer-based refinement. To leverage temporal information, we design a Dual-Branch Temporal Encoder that processes multi-modal temporal features in parallel across BEV and voxel spaces, enabling comprehensive spatio-temporal representation learning. Furthermore, we propose a Cross-Modal BEV-Voxel Fusion module that adaptively fuses complementary features through attention mechanisms while employing auxiliary tasks to enhance feature quality. Extensive experiments on the OmniHD-Scenes, View-of-Delft (VoD), and TJ4DRadSet datasets demonstrate that Doracamom achieves state-of-the-art performance in both tasks, establishing new benchmarks for multi-modal 3D perception. Code and models will be publicly available.
Related papers
- MetaOcc: Surround-View 4D Radar and Camera Fusion Framework for 3D Occupancy Prediction with Dual Training Strategies [10.662778683303726]
We propose MetaOcc, a novel multi-modal occupancy prediction framework.
We first design a height self-attention module for effective 3D feature extraction from sparse radar points.
Finally, we develop a semi-supervised training procedure leveraging open-set segmentor and geometric constraints for pseudo-label generation.
arXiv Detail & Related papers (2025-01-26T03:51:56Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - 4DRVO-Net: Deep 4D Radar-Visual Odometry Using Multi-Modal and
Multi-Scale Adaptive Fusion [2.911052912709637]
Four-dimensional (4D) radar--visual odometry (4DRVO) integrates complementary information from 4D radar and cameras.
4DRVO may exhibit significant tracking errors owing to sparsity of 4D radar point clouds.
We present 4DRVO-Net, which is a method for 4D radar--visual odometry.
arXiv Detail & Related papers (2023-08-12T14:00:09Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.