論文の概要: OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
- arxiv url: http://arxiv.org/abs/2501.15427v1
- Date: Sun, 26 Jan 2025 07:07:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:20.311677
- Title: OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
- Title(参考訳): OpenCharacter: 大規模合成ペルソナによるカスタマイズ可能なロールプレイング LLM のトレーニング
- Authors: Xiaoyang Wang, Hongming Zhang, Tao Ge, Wenhao Yu, Dian Yu, Dong Yu,
- Abstract要約: 本研究では,文字一般化機能を備えた大規模言語モデルを実現するための大規模データ合成手法について検討する。
まず、ペルソナハブのペルソナを用いて、大規模な文字プロファイルを合成することから始める。
次に、応答書き換えと応答生成という2つの戦略を検討し、文字対応の命令応答を生成する。
- 参考スコア(独自算出の注目度): 65.83634577897564
- License:
- Abstract: Customizable role-playing in large language models (LLMs), also known as character generalization, is gaining increasing attention for its versatility and cost-efficiency in developing and deploying role-playing dialogue agents. This study explores a large-scale data synthesis approach to equip LLMs with character generalization capabilities. We begin by synthesizing large-scale character profiles using personas from Persona Hub and then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses. To validate the effectiveness of our synthetic instruction tuning data for character generalization, we perform supervised fine-tuning (SFT) using the LLaMA-3 8B model. Our best-performing model strengthens the original LLaMA-3 8B Instruct model and achieves performance comparable to GPT-4o models on role-playing dialogue. We release our synthetic characters and instruction-tuning dialogues to support public research.
- Abstract(参考訳): 大型言語モデル(LLM)におけるカスタマイズ可能なロールプレイングは、キャラクターの一般化としても知られており、ロールプレイング・ダイアログエージェントの開発と展開において、その汎用性とコスト効率に注目が集まっている。
本研究では,LLMに文字汎化機能を持たせるための大規模データ合成手法について検討する。
まず、ペルソナ・ハブからペルソナを用いて大規模な文字プロファイルを合成し、応答書き換えと応答生成という2つの戦略を探求し、文字整合型命令応答を生成する。
LLaMA-3 8Bモデルを用いて教師付き微調整(SFT)を行う。
LLaMA-3 8B インストラクタモデルを強化し,ロールプレイング対話における GPT-4o モデルに匹敵する性能を実現する。
我々は,公的な研究を支援するために,合成文字と指導指導対話をリリースする。
関連論文リスト
- Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits [4.092862870428798]
我々は,人格特性を統合することで,カスタム文字のLLMをデータ処理し,訓練するためのフレームワークOrcaを提案する。
Orcaは4つのステージで構成されている。 パーソナリティ特性の推測、LCMの活用により、ユーザのBigFiveパーソナリティ特性のレポートとスコアを推測する。
提案手法は,本ベンチマークにおいて優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-11-15T07:35:47Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
モデルアライメントのための合成選好データを活用する自己ブースティングパラダイムであるSynPOを紹介する。
4回のSynPOイテレーションの後、Llama3-8BとMistral-7Bは命令追従能力を大幅に強化した。
SynPO は様々なタスクにおける LLM の一般的な性能を改善し、よく認識された Open LLM のリーダーボード上で平均スコアが 3.2 から 5.0 に向上した。
論文 参考訳(メタデータ) (2024-10-09T14:57:31Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
本稿では,ロールプレイのための自己アライメント手法であるDittoを紹介する。
この方法は4000文字からなるロールプレイトレーニングセットを生成し、現在利用可能なデータセットのスケールを10倍に超える。
本稿では,ロールプレイ領域におけるクロススーパービジョンアライメント実験について紹介する。
論文 参考訳(メタデータ) (2024-01-23T03:56:22Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
本稿では,ChatGLM上に構築されたモデルである characterGLM について紹介する。
我々のキャラクタGLMは文字ベースの対話(CharacterDial)を生成するために設計されており、人間固有の社会的欲求と感情的欲求を満たすための文字カスタマイズを備えた対話型AIシステムを実現することを目的としている。
論文 参考訳(メタデータ) (2023-11-28T14:49:23Z) - RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models [107.00832724504752]
大規模言語モデル(LLM)におけるロールプレイング能力をベンチマークし、評価し、拡張するフレームワークであるRoleLLMを紹介する。
Context-InstructとRoleGPTによって、168,093サンプルでロールプレイする最初の体系的できめ細かい文字レベルのベンチマークデータセットであるRoleBenchを作成します。
論文 参考訳(メタデータ) (2023-10-01T17:52:59Z) - Personality Traits in Large Language Models [44.908741466152215]
コミュニケーションの有効性を決定する重要な要因は人格である。
広範に使われている大規模言語モデルにおいて,パーソナリティテストの管理と検証を行う包括的手法を提案する。
本稿では,計測・形成手法の応用と倫理的意義,特に責任あるAIについて論じる。
論文 参考訳(メタデータ) (2023-07-01T00:58:51Z) - Aligning Large Language Models through Synthetic Feedback [43.84431341195111]
本研究では,ヒトのアノテーションに依存しない合成フィードバックを用いたアライメント学習フレームワークを提案する。
人間の評価では,我々のモデルはアルパカとドリー-v2にそれぞれ55.0%,58.5%が好まれる。
論文 参考訳(メタデータ) (2023-05-23T06:41:16Z) - The Next Chapter: A Study of Large Language Models in Storytelling [51.338324023617034]
大規模言語モデル(LLM)を用いたプロンプトベース学習の適用は,自然言語処理(NLP)タスクにおいて顕著な性能を示した。
本稿では,LLMのストーリー生成能力と最近のモデルを比較するために,自動評価と人的評価の両方を利用した総合的な調査を行う。
その結果、LLMは他のストーリー生成モデルと比較して、非常に高い品質のストーリーを生成することがわかった。
論文 参考訳(メタデータ) (2023-01-24T02:44:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。