OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
- URL: http://arxiv.org/abs/2501.15427v2
- Date: Tue, 18 Feb 2025 04:04:05 GMT
- Title: OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas
- Authors: Xiaoyang Wang, Hongming Zhang, Tao Ge, Wenhao Yu, Dian Yu, Dong Yu,
- Abstract summary: This study explores a large-scale data synthesis approach to equip large language models with character generalization capabilities.
We begin by synthesizing large-scale character profiles using personas from Persona Hub.
We then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses.
- Score: 65.83634577897564
- License:
- Abstract: Customizable role-playing in large language models (LLMs), also known as character generalization, is gaining increasing attention for its versatility and cost-efficiency in developing and deploying role-playing dialogue agents. This study explores a large-scale data synthesis approach to equip LLMs with character generalization capabilities. We begin by synthesizing large-scale character profiles using personas from Persona Hub and then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses. To validate the effectiveness of our synthetic instruction tuning data for character generalization, we perform supervised fine-tuning (SFT) using the LLaMA-3 8B model. Our best-performing model strengthens the original LLaMA-3 8B Instruct model and achieves performance comparable to GPT-4o models on role-playing dialogue. We release our synthetic characters and instruction-tuning dialogues to support public research.
Related papers
- Exploring the Potential of Large Language Models to Simulate Personality [39.58317527488534]
We aim to simulate personal traits according to the Big Five model with the use of large language models (LLMs)
We present a dataset of generated texts with the predefined Big Five characteristics and provide an analytical framework for testing LLMs on a simulation of personality skills.
arXiv Detail & Related papers (2025-02-12T10:17:18Z) - Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits [4.092862870428798]
We propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits.
Orca comprises four stages: Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores.
Our experiments demonstrate that our proposed model achieves superior performance on this benchmark.
arXiv Detail & Related papers (2024-11-15T07:35:47Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment.
After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities.
SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
arXiv Detail & Related papers (2024-10-09T14:57:31Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
We introduce Ditto, a self-alignment method for role-play.
This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold.
We present the first comprehensive cross-supervision alignment experiment in the role-play domain.
arXiv Detail & Related papers (2024-01-23T03:56:22Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
We present CharacterGLM, a series of models built upon ChatGLM, with model sizes ranging from 6B to 66B parameters.
Our CharacterGLM is designed for generating Character-based Dialogues (CharacterDial), which aims to equip a conversational AI system with character customization for satisfying people's inherent social desires and emotional needs.
arXiv Detail & Related papers (2023-11-28T14:49:23Z) - RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models [107.00832724504752]
We introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in Large Language Models (LLMs)
By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples.
arXiv Detail & Related papers (2023-10-01T17:52:59Z) - Personality Traits in Large Language Models [44.908741466152215]
Personality is a key factor determining the effectiveness of communication.
We present a comprehensive method for administering and validating personality tests on widely-used large language models.
We discuss application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.
arXiv Detail & Related papers (2023-07-01T00:58:51Z) - Aligning Large Language Models through Synthetic Feedback [43.84431341195111]
We propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations.
In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively.
arXiv Detail & Related papers (2023-05-23T06:41:16Z) - The Next Chapter: A Study of Large Language Models in Storytelling [51.338324023617034]
The application of prompt-based learning with large language models (LLMs) has exhibited remarkable performance in diverse natural language processing (NLP) tasks.
This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models.
The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models.
arXiv Detail & Related papers (2023-01-24T02:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.