Identifying Critical Tokens for Accurate Predictions in Transformer-based Medical Imaging Models
- URL: http://arxiv.org/abs/2501.15452v1
- Date: Sun, 26 Jan 2025 08:49:13 GMT
- Title: Identifying Critical Tokens for Accurate Predictions in Transformer-based Medical Imaging Models
- Authors: Solha Kang, Joris Vankerschaver, Utku Ozbulak,
- Abstract summary: We take a step towards demystifying the decision-making process of transformer-based medical imaging models.
We propose Token Insight, a novel method that identifies the critical tokens that contribute to the prediction made by the model.
Our experimental results indicate that Token Insight contributes to a more transparent and interpretable transformer-based medical imaging model.
- Score: 0.4915744683251151
- License:
- Abstract: With the advancements in self-supervised learning (SSL), transformer-based computer vision models have recently demonstrated superior results compared to convolutional neural networks (CNNs) and are poised to dominate the field of artificial intelligence (AI)-based medical imaging in the upcoming years. Nevertheless, similar to CNNs, unveiling the decision-making process of transformer-based models remains a challenge. In this work, we take a step towards demystifying the decision-making process of transformer-based medical imaging models and propose Token Insight, a novel method that identifies the critical tokens that contribute to the prediction made by the model. Our method relies on the principled approach of token discarding native to transformer-based models, requires no additional module, and can be applied to any transformer model. Using the proposed approach, we quantify the importance of each token based on its contribution to the prediction and enable a more nuanced understanding of the model's decisions. Our experimental results which are showcased on the problem of colonic polyp identification using both supervised and self-supervised pretrained vision transformers indicate that Token Insight contributes to a more transparent and interpretable transformer-based medical imaging model, fostering trust and facilitating broader adoption in clinical settings.
Related papers
- Inverting Visual Representations with Detection Transformers [0.8124699127636158]
We apply the approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer.
We demonstrate critical properties of Detection Transformers, including contextual shape robustness, inter-layer correlation, and preservation to color perturbations.
arXiv Detail & Related papers (2024-12-09T14:43:06Z) - Improved EATFormer: A Vision Transformer for Medical Image Classification [0.0]
This paper presents an improved Algorithm-based Transformer architecture for medical image classification using Vision Transformers.
The proposed EATFormer architecture combines the strengths of Convolutional Neural Networks and Vision Transformers.
Experimental results on the Chest X-ray and Kvasir datasets demonstrate that the proposed EATFormer significantly improves prediction speed and accuracy compared to baseline models.
arXiv Detail & Related papers (2024-03-19T21:40:20Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
Building AI models with trustworthiness is important especially in regulated areas such as healthcare.
Previous work uses convolutional neural networks as the backbone architecture, which has shown to be prone to over-caution and overconfidence in making decisions.
We propose a feature learning approach using Vision Transformers, which use an attention-based mechanism.
arXiv Detail & Related papers (2022-07-19T14:55:42Z) - From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology [1.8947504307591034]
We develop a new methodology to extensively evaluate a wide range of classification models.
We thoroughly tested the models on five widely used histopathology datasets.
We extend existing interpretability methods and systematically reveal insights of the models' classifications strategies.
arXiv Detail & Related papers (2022-04-11T12:26:19Z) - Class-Aware Generative Adversarial Transformers for Medical Image
Segmentation [39.14169989603906]
We present CA-GANformer, a novel type of generative adversarial transformers, for medical image segmentation.
First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations.
We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures.
arXiv Detail & Related papers (2022-01-26T03:50:02Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.