Explainable Techniques for Analyzing Flow Cytometry Cell Transformers
- URL: http://arxiv.org/abs/2307.14581v1
- Date: Thu, 27 Jul 2023 02:03:52 GMT
- Title: Explainable Techniques for Analyzing Flow Cytometry Cell Transformers
- Authors: Florian Kowarsch, Lisa Weijler, FLorian Kleber, Matthias W\"odlinger,
Michael Reiter, Margarita Maurer-Granofszky, Michael Dworzak
- Abstract summary: We evaluate the usage of a transformer architecture called ReluFormer that eases attention visualization.
We propose a gradient- and an attention-based visualization technique tailored for Flow CytoMetry (FCM) data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Explainability for Deep Learning Models is especially important for clinical
applications, where decisions of automated systems have far-reaching
consequences.
While various post-hoc explainable methods, such as attention visualization
and saliency maps, already exist for common data modalities, including natural
language and images, little work has been done to adapt them to the modality of
Flow CytoMetry (FCM) data.
In this work, we evaluate the usage of a transformer architecture called
ReluFormer that ease attention visualization as well as we propose a gradient-
and an attention-based visualization technique tailored for FCM. We
qualitatively evaluate the visualization techniques for cell classification and
polygon regression on pediatric Acute Lymphoblastic Leukemia (ALL) FCM samples.
The results outline the model's decision process and demonstrate how to utilize
the proposed techniques to inspect the trained model. The gradient-based
visualization not only identifies cells that are most significant for a
particular prediction but also indicates the directions in the FCM feature
space in which changes have the most impact on the prediction. The attention
visualization provides insights on the transformer's decision process when
handling FCM data. We show that different attention heads specialize by
attending to different biologically meaningful sub-populations in the data,
even though the model retrieved solely supervised binary classification signals
during training.
Related papers
- CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
We propose an optimized Coupled Transformer Convolutional Network (CoTCoNet) framework for the classification of leukemia.
Our framework captures comprehensive global features and scalable spatial patterns, enabling the identification of complex and large-scale hematological features.
It achieves remarkable accuracy and F1-Score rates of 0.9894 and 0.9893, respectively.
arXiv Detail & Related papers (2024-10-11T13:31:28Z) - Integrating Clinical Knowledge into Concept Bottleneck Models [18.26357481872999]
Concept bottleneck models (CBMs) predict human-interpretable concepts before predicting the final output.
We propose integrating clinical knowledge to refine CBMs, better aligning them with clinicians' decision-making processes.
We validate our approach on two datasets of medical images: white blood cell and skin images.
arXiv Detail & Related papers (2024-07-09T07:03:42Z) - Improved EATFormer: A Vision Transformer for Medical Image Classification [0.0]
This paper presents an improved Algorithm-based Transformer architecture for medical image classification using Vision Transformers.
The proposed EATFormer architecture combines the strengths of Convolutional Neural Networks and Vision Transformers.
Experimental results on the Chest X-ray and Kvasir datasets demonstrate that the proposed EATFormer significantly improves prediction speed and accuracy compared to baseline models.
arXiv Detail & Related papers (2024-03-19T21:40:20Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.