論文の概要: Low-altitude UAV Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.15468v2
- Date: Mon, 10 Nov 2025 02:49:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 14:55:59.751693
- Title: Low-altitude UAV Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning
- Title(参考訳): 生成AIを用いた深層強化学習による衛星海事通信のための低高度UAVフレンドリージャミング
- Authors: Jiawei Huang, Aimin Wang, Geng Sun, Jiahui Li, Jiacheng Wang, Dusit Niyato, Victor C. M. Leung,
- Abstract要約: 本稿では,低高度無人航空機(UAV)による衛星海上通信システムを提案する。
安全衛星・海上通信多目的最適化問題(SSMCMOP)を定式化する。
動的かつ長期の最適化問題を解くため、マルコフ決定過程に再構成する。
次に,トランスサック (TransSAC) アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 72.23178920029957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low Earth orbit (LEO) satellites can be used to assist maritime wireless communications for wide-area data transmission. However, the extensive coverage of LEO satellites, combined with the openness of channels, can cause the communication process to suffer from security risks. This paper presents a LEO satellite-maritime communication system assisted by low-altitude unmanned aerial vehicle (UAV) friendly-jamming to ensure data security at the physical layer. Since such a system requires balancing the conflicting performance metrics of secrecy rate and energy consumption of the UAV to meet evolving scenario demands, we formulate a secure satellite-maritime communication multi-objective optimization problem (SSMCMOP). In order to solve the dynamic and long-term optimization problem, we reformulate it into a Markov decision process. We then propose a transformer-enhanced soft actor-critic (TransSAC) algorithm, which is a generative artificial intelligence-enabled deep reinforcement learning approach to solve the reformulated problem, thus capturing strong temporal correlations and diversely exploring weights. Simulation results demonstrate that the TransSAC algorithm outperforms comparative approaches and algorithms, maximizing the secrecy rate while effectively minimizing the energy consumption of the UAV. Moreover, the results identify more suitable constraints for the system.
- Abstract(参考訳): 低地球軌道(LEO)衛星は、海洋無線通信の広域データ伝送を支援するために使用できる。
しかし、LEO衛星の広範囲のカバレッジとチャネルの開放性は、通信プロセスがセキュリティリスクに悩まされる可能性がある。
本稿では,低高度無人航空機(UAV)によるLEO衛星海上通信システムについて述べる。
このようなシステムは、進化するシナリオ要求を満たすために、秘密レートとUAVのエネルギー消費の相反する性能指標のバランスを必要とするため、安全な衛星海上通信多目的最適化問題(SSMCMOP)を定式化する。
動的かつ長期の最適化問題を解くため、マルコフ決定過程に再構成する。
次に,トランスサック(TransSAC)アルゴリズムを提案する。トランスサック(TransSAC)アルゴリズムは,人工知能を応用した深層強化学習手法であり,時間的相関が強く,重量も多様である。
シミュレーションの結果、TransSACアルゴリズムは、秘密保持率を最大化しつつ、UAVのエネルギー消費を効果的に最小化しながら、比較手法やアルゴリズムよりも優れていることが示された。
さらに,システムはより適切な制約を課す。
関連論文リスト
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
この研究は、エネルギー制約下での不均一なUAVネットワーク(HetUAVN)における機密率の最大化に焦点を当てている。
本稿では,Large Language Model (LLM) を用いたマルチエージェント学習手法を提案する。
その結果,本手法は機密性やエネルギー効率において,既存のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-07-23T04:22:57Z) - Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems [34.92822911897626]
統合センシング通信(ISAC)機能を備えた無人航空機(UAV)は、将来の無線ネットワークにおいて重要な役割を果たすと想定されている。
ターゲットセンシングとマルチユーザ通信を同時に行う老化情報(AoI)システムを提案する。
論文 参考訳(メタデータ) (2025-07-18T18:17:09Z) - Dual UAV Cluster-Assisted Maritime Physical Layer Secure Communications via Collaborative Beamforming [47.191944685913036]
無人航空機(UAV)は、海上無線通信を支援する中継プラットフォームとして使用できる。
共同ビームフォーミング(CB)は、遠隔での海上通信のためにUAV中継を支援するために、信号強度と範囲を増強することができる。
本稿では,海上無線通信における物理層セキュリティを実現するために,CBを経由した二重UAVクラスタアシストシステムを提案する。
論文 参考訳(メタデータ) (2024-12-08T14:11:02Z) - Integrated Sensing and Communications for Low-Altitude Economy: A Deep Reinforcement Learning Approach [20.36806314683902]
低高度経済(LAE)のための統合センシング・通信(ISAC)システムについて検討する。
所定の飛行期間における通信総和レートは、GBSとUAVの軌道でのビームフォーミングを共同最適化することにより最大化する。
本稿では, 深部強化学習(DRL)技術を活用して, 深部LAE-ISAC(Deep LAE-ISAC)と呼ばれる新しいLEE指向ISAC方式を提案する。
論文 参考訳(メタデータ) (2024-12-05T11:12:46Z) - Latency Optimization in LEO Satellite Communications with Hybrid Beam Pattern and Interference Control [20.19239663262141]
低軌道(LEO)衛星通信システムは次世代用途に不可欠な高容量で低遅延のサービスを提供する。
LEO星座の密な構成は資源配分最適化と干渉管理の課題を提起する。
本稿では,マルチビームLEOシステムにおけるビームスケジューリングとリソース割り当てを最適化するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:18:24Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。