論文の概要: Exploring and Evaluating Interplays of BPpy with Deep Reinforcement Learning and Formal Methods
- arxiv url: http://arxiv.org/abs/2501.15480v1
- Date: Sun, 26 Jan 2025 10:52:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:58:32.331312
- Title: Exploring and Evaluating Interplays of BPpy with Deep Reinforcement Learning and Formal Methods
- Title(参考訳): 深部強化学習と形式的手法によるBPpyの相互作用の探索と評価
- Authors: Tom Yaacov, Gera Weiss, Adiel Ashrov, Guy Katz, Jules Zisser,
- Abstract要約: 本研究では,行動プログラミング (BP) と人工知能 (AI) と形式的手法 (FM) の相互作用について検討・評価する。
本稿では,PythonベースのBPの実装であるBPpyフレームワークがどのように拡張され,さまざまなFMおよびAIツールによって拡張されているかを検討する。
- 参考スコア(独自算出の注目度): 1.0905169282633254
- License:
- Abstract: We explore and evaluate the interactions between Behavioral Programming (BP) and a range of Artificial Intelligence (AI) and Formal Methods (FM) techniques. Our goal is to demonstrate that BP can serve as an abstraction that integrates various techniques, enabling a multifaceted analysis and a rich development process. Specifically, the paper examines how the BPpy framework, a Python-based implementation of BP, is enhanced by and enhances various FM and AI tools. We assess how integrating BP with tools such as Satisfiability Modulo Theory (SMT) solvers, symbolic and probabilistic model checking, and Deep Reinforcement Learning (DRL) allow us to scale the abilities of BP to model complex systems. Additionally, we illustrate how developers can leverage multiple tools within a single modeling and development task. The paper provides quantitative and qualitative evidence supporting the feasibility of our vision to create a comprehensive toolbox for harnessing AI and FM methods in a unified development framework.
- Abstract(参考訳): 本研究では,行動プログラミング (BP) と人工知能 (AI) と形式的手法 (FM) の相互作用について検討・評価する。
我々のゴールは、BPが様々な技術を統合する抽象化として機能し、多面的分析とリッチな開発プロセスを可能にすることである。
具体的には,PythonベースのBPの実装であるBPpyフレームワークがFMおよびAIツールによってどのように拡張され,強化されているかを検討する。
BPとSMT(Satifiability Modulo Theory)の解法、記号的および確率的モデル検査、および深層強化学習(DRL)といったツールを統合することで、BPの複雑なシステムをモデル化する能力をどのように拡張するかを評価する。
さらに、開発者は単一のモデリングと開発タスクで複数のツールを利用できるかを説明します。
この論文は、AIとFMメソッドを統合開発フレームワークで活用するための包括的なツールボックスを構築するための、我々のビジョンの実現可能性を支える定量的かつ質的な証拠を提供する。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
本研究は,生物医学的応用における現在の中間核融合法の解析と形式化を目的としている。
バイオメディカルドメインを超えて,これらの手法の理解と応用を高めるための構造的表記法を導入する。
我々の発見は、より高度で洞察に富んだマルチモーダルモデルの開発において、研究者、医療専門家、そしてより広範なディープラーニングコミュニティを支援することを目的としています。
論文 参考訳(メタデータ) (2024-08-02T11:48:04Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Neural Enhanced Belief Propagation for Data Assocation in Multiobject
Tracking [8.228150100178983]
マルチオブジェクトトラッキング(MOT)は、自律ナビゲーションや応用海洋科学などの分野における新しいサービスとアプリケーションを作成する。
信念伝播(BP)はベイジアンMOTの最先端の手法であるが、統計モデルと事前処理されたセンサ測定に完全に依存している。
我々は,モデルベースおよびデータ駆動型MOTのハイブリッド手法を構築し,提案手法は生センサデータから得られた情報によってBPを補完する。
nuScenes 自律走行データセット上でのMOTに対するNEBP手法の性能評価を行い,その性能を実証する。
論文 参考訳(メタデータ) (2022-03-17T00:12:48Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Tools and Practices for Responsible AI Engineering [0.5249805590164901]
我々は、責任あるAIエンジニアリングに対する重要なニーズに対処する2つの新しいソフトウェアライブラリを提示する。
hydra-zenは、複雑なAIアプリケーションとその振る舞いを再現するプロセスを劇的に単純化する。
rAI-toolboxは、AIモデルの堅牢性を評価し、拡張する方法を可能にするように設計されている。
論文 参考訳(メタデータ) (2022-01-14T19:47:46Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。