論文の概要: FedAlign: Federated Domain Generalization with Cross-Client Feature Alignment
- arxiv url: http://arxiv.org/abs/2501.15486v1
- Date: Sun, 26 Jan 2025 11:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:03.216549
- Title: FedAlign: Federated Domain Generalization with Cross-Client Feature Alignment
- Title(参考訳): FedAlign: クロスクライアント機能アライメントを備えたフェデレーションドメインの一般化
- Authors: Sunny Gupta, Vinay Sutar, Varunav Singh, Amit Sethi,
- Abstract要約: Federated Learning (FL)は、直接的なデータ共有なしに協調的なモデルトレーニングのための分散パラダイムを提供する。
ドメイン一般化(DG)には、厳密なプライバシー制約、非i.d.ローカルデータ、ドメインの多様性の制限など、ユニークな課題がある。
我々はフェデレーション設定におけるDGを強化するために設計された軽量なプライバシ保護フレームワークであるFedAlignを紹介する。
- 参考スコア(独自算出の注目度): 2.4472081831862655
- License:
- Abstract: Federated Learning (FL) offers a decentralized paradigm for collaborative model training without direct data sharing, yet it poses unique challenges for Domain Generalization (DG), including strict privacy constraints, non-i.i.d. local data, and limited domain diversity. We introduce FedAlign, a lightweight, privacy-preserving framework designed to enhance DG in federated settings by simultaneously increasing feature diversity and promoting domain invariance. First, a cross-client feature extension module broadens local domain representations through domain-invariant feature perturbation and selective cross-client feature transfer, allowing each client to safely access a richer domain space. Second, a dual-stage alignment module refines global feature learning by aligning both feature embeddings and predictions across clients, thereby distilling robust, domain-invariant features. By integrating these modules, our method achieves superior generalization to unseen domains while maintaining data privacy and operating with minimal computational and communication overhead.
- Abstract(参考訳): フェデレートラーニング(FL)は、直接的なデータ共有のない協調モデルトレーニングのための分散パラダイムを提供するが、ドメイン一般化(DG)には、厳密なプライバシ制約、非i.d.ローカルデータ、限定されたドメイン多様性など、ユニークな課題を提起する。
我々はFedAlignを紹介した。FedAlignは、フェデレーション設定におけるDGを強化するために設計された軽量なプライバシー保護フレームワークである。
まず、クロスクライアント機能拡張モジュールは、ドメイン不変の機能摂動と選択的クロスクライアント機能転送を通じて、ローカルドメイン表現を拡張し、各クライアントがよりリッチなドメイン空間に安全にアクセスできるようにする。
第2に、デュアルステージアライメントモジュールは、機能埋め込みとクライアント間の予測の両方を整列させることで、グローバルな機能学習を洗練し、堅牢でドメイン不変な機能を蒸留する。
これらのモジュールを統合することで、データプライバシを維持しながら、最小限の計算および通信オーバーヘッドで操作しながら、未確認領域への優れた一般化を実現する。
関連論文リスト
- FedCCRL: Federated Domain Generalization with Cross-Client Representation Learning [4.703379311088474]
ドメイン一般化(DG)は、目に見えないドメインに効果的に一般化できるモデルを訓練することを目的としている。
クライアントがデータを直接共有せずに協調的にモデルをトレーニングするフェデレートラーニング(FL)では、既存のDGアルゴリズムはFL設定に直接適用できない。
プライバシを保ちながらモデルの一般化能力を大幅に向上させる軽量なフェデレーションドメイン一般化手法であるFedCCRLを提案する。
論文 参考訳(メタデータ) (2024-10-15T04:44:21Z) - FedGCA: Global Consistent Augmentation Based Single-Source Federated Domain Generalization [29.989092118578103]
Federated Domain Generalization (FedDG) は、多ドメイントレーニングサンプルでドメインを見落とせるように、グローバルモデルをトレーニングすることを目的としている。
連合学習ネットワークのクライアントは、固有のサンプリングと時間制限のため、単一のIIDドメインに制限されることが多い。
本稿では,FedGCA(Federated Global Consistent Augmentation)法について紹介する。
論文 参考訳(メタデータ) (2024-09-23T02:24:46Z) - Feature Diversification and Adaptation for Federated Domain Generalization [27.646565383214227]
実世界のアプリケーションでは、ローカルクライアントは、しばしば制限されたドメイン内で動作し、クライアント間でのドメインシフトにつながる。
フェデレーション(federated feature diversification)の概念を導入し,プライバシを保ちながら,ローカルモデルによるクライアント不変表現の学習を支援する。
我々のグローバルモデルでは、目に見えないテスト領域データに対して堅牢な性能を示す。
論文 参考訳(メタデータ) (2024-07-11T07:45:10Z) - Hypernetwork-Driven Model Fusion for Federated Domain Generalization [26.492360039272942]
フェデレートラーニング(FL)は、異種データのドメインシフトにおいて大きな課題に直面します。
非線形アグリゲーションにハイパーネットワークを用いた、ハイパーネットワークベースのフェデレート・フュージョン(hFedF)と呼ばれるロバストなフレームワークを提案する。
本手法では,ドメインの一般化を効果的に管理するために,クライアント固有の埋め込みと勾配アライメント手法を用いる。
論文 参考訳(メタデータ) (2024-02-10T15:42:03Z) - FACT: Federated Adversarial Cross Training [0.0]
Federated Adrial Cross Training (FACT)は、ソースクライアント間の暗黙のドメイン差を利用して、ターゲットドメイン内のドメインシフトを特定する。
我々は、FACTが最先端のフェデレーション、非フェデレーション、およびソースフリードメイン適応モデルより優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-06-01T12:25:43Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。