論文の概要: Unveiling the Potential of iMarkers: Invisible Fiducial Markers for Advanced Robotics
- arxiv url: http://arxiv.org/abs/2501.15505v2
- Date: Mon, 24 Feb 2025 10:27:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:46:44.595472
- Title: Unveiling the Potential of iMarkers: Invisible Fiducial Markers for Advanced Robotics
- Title(参考訳): iMarkersの可能性を探る:高度なロボティクスのための目に見えないフィデューシャルマーカー
- Authors: Ali Tourani, Deniz Isinsu Avsar, Hriday Bavle, Jose Luis Sanchez-Lopez, Jan Lagerwall, Holger Voos,
- Abstract要約: フィデューシャルマーカーは、ナビゲーション、オブジェクト認識、シーン理解を促進する様々なロボティクスタスクで広く使われている。
本稿では,特殊センサーを搭載したロボットでのみ検出可能な「iMarkers」のイノベーティブで邪魔にならないフィデューシャルマーカーを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Fiducial markers are widely used in various robotics tasks, facilitating enhanced navigation, object recognition, and scene understanding. Despite their advantages for robots and Augmented Reality (AR) applications, they often disrupt the visual aesthetics of environments because they are visible to humans, making them unsuitable for non-intrusive use cases. To address this gap, this paper presents "iMarkers"-innovative, unobtrusive fiducial markers detectable exclusively by robots equipped with specialized sensors. These markers offer high flexibility in production, allowing customization of their visibility range and encoding algorithms to suit various demands. The paper also introduces the hardware designs and software algorithms developed for detecting iMarkers, highlighting their adaptability and robustness in the detection and recognition stages. Various evaluations have demonstrated the effectiveness of iMarkers compared to conventional (printed) and blended fiducial markers and confirmed their applicability in diverse robotics scenarios.
- Abstract(参考訳): フィデューシャルマーカーは、ナビゲーション、オブジェクト認識、シーン理解を促進する様々なロボティクスタスクで広く使われている。
ロボットや拡張現実(Augmented Reality, AR)の応用には利点があるが、人間の目に見える環境の視覚的美学を損なうことが多く、非侵襲的なユースケースには適さない。
このギャップに対処するため,特殊センサーを搭載したロボットでのみ検出可能な「iMarkers」のイノベーティブで邪魔にならないフィデューシャルマーカーを提案する。
これらのマーカーは生産時の柔軟性が高く、可視範囲をカスタマイズし、アルゴリズムを様々な要求に合わせることができる。
また,iMarkersの検出のために開発されたハードウェア設計やソフトウェアアルゴリズムについても紹介し,検出および認識段階における適応性と堅牢性を強調した。
従来の(印刷された)フィデューシャルマーカーとブレンドされたフィデューシャルマーカーと比較して,iMarkersの有効性を実証し,多様なロボティクスシナリオにおける適用性を確認した。
関連論文リスト
- MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLMは、LLMウォーターマーキングアルゴリズムを実装するためのオープンソースのツールキットである。
評価のために、MarkLLMは3つの視点にまたがる12のツールと、2種類の自動評価パイプラインを提供する。
論文 参考訳(メタデータ) (2024-05-16T12:40:01Z) - Improving Facial Landmark Detection Accuracy and Efficiency with Knowledge Distillation [4.779050216649159]
本稿では,知識蒸留法の開発を通じて,これらの課題に対処する新しいアプローチを提案する。
私たちの目標は、さまざまな条件下で顔のランドマークを正確に特定できるモデルを設計することです。
この手法は成功し、IEEE ICME 2024 PAIRコンペティションの参加者165人中6位に終わった。
論文 参考訳(メタデータ) (2024-04-09T05:30:58Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
提案フレームワークは,RGBや深度カメラ,マイク,力トルクセンサなど,さまざまなロボットセンサから収集した異種データストリームを統合する。
統合されたデータは、ディープオートエンコーダを訓練して、通常の状態を示す多感覚データの潜在表現を構築するために使用される。
次に、トレーニングされたエンコーダの潜伏値と再構成された入力データの潜伏値との差によって測定された誤差スコアによって異常を識別することができる。
論文 参考訳(メタデータ) (2024-03-06T09:15:53Z) - Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone
Periocular Recognition [52.15994166413364]
我々は、複数のコンパレータを融合させて、異なるスマートフォンの画像を比較する際に、眼周囲の性能を改善する。
我々は線形ロジスティック回帰に基づく確率的融合フレームワークを使用し、融合したスコアはログライクな比率になる傾向にある。
我々のフレームワークは、同じセンサとクロスセンサーのスコア分布が整列され、共通の確率領域にマッピングされるため、異なるデバイスからの信号を処理するためのエレガントでシンプルなソリューションも提供します。
論文 参考訳(メタデータ) (2023-11-02T13:43:44Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
本稿では,人間の直感的な評価を目的とした最初のDNN透かし手法であるClearMarkを紹介する。
ClearMarkは目に見える透かしを埋め込んで、厳格な値閾値なしで人間の意思決定を可能にする。
8,544ビットの透かし容量は、現存する最強の作品に匹敵する。
論文 参考訳(メタデータ) (2023-10-25T08:16:55Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - RF-Annotate: Automatic RF-Supervised Image Annotation of Common Objects
in Context [0.25019493958767397]
ワイヤレスタグは、小売商品、食品、薬品、衣服、書籍、文書、鍵、機器など、一般的な商品の追跡や識別にますます利用されている。
本稿では,自律的画素画像アノテーションのためのパイプラインRF-Annotateについて述べる。
論文 参考訳(メタデータ) (2022-11-16T11:25:38Z) - DeepFormableTag: End-to-end Generation and Recognition of Deformable
Fiducial Markers [27.135078472097895]
既存の検出方法は、マーカーが理想的に平面面に印刷されていると仮定する。
フィデューシャルマーカー生成器は、大規模な情報を符号化する自由形式のカラーパターンのセットを作成する。
微分可能画像シミュレータは、変形マーカーを用いたフォトリアリスティックシーン画像のトレーニングデータセットを作成する。
訓練されたマーカー検出器は興味のある領域を探し、同時に複数のマーカーパターンを認識する。
論文 参考訳(メタデータ) (2022-06-16T09:29:26Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。