論文の概要: MarkLLM: An Open-Source Toolkit for LLM Watermarking
- arxiv url: http://arxiv.org/abs/2405.10051v6
- Date: Sat, 26 Oct 2024 05:11:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:26.327474
- Title: MarkLLM: An Open-Source Toolkit for LLM Watermarking
- Title(参考訳): MarkLLM: LLMウォーターマーキングのためのオープンソースツールキット
- Authors: Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu, Xuming Hu, Lijie Wen, Irwin King, Philip S. Yu,
- Abstract要約: MarkLLMは、LLMウォーターマーキングアルゴリズムを実装するためのオープンソースのツールキットである。
評価のために、MarkLLMは3つの視点にまたがる12のツールと、2種類の自動評価パイプラインを提供する。
- 参考スコア(独自算出の注目度): 80.00466284110269
- License:
- Abstract: LLM watermarking, which embeds imperceptible yet algorithmically detectable signals in model outputs to identify LLM-generated text, has become crucial in mitigating the potential misuse of large language models. However, the abundance of LLM watermarking algorithms, their intricate mechanisms, and the complex evaluation procedures and perspectives pose challenges for researchers and the community to easily experiment with, understand, and assess the latest advancements. To address these issues, we introduce MarkLLM, an open-source toolkit for LLM watermarking. MarkLLM offers a unified and extensible framework for implementing LLM watermarking algorithms, while providing user-friendly interfaces to ensure ease of access. Furthermore, it enhances understanding by supporting automatic visualization of the underlying mechanisms of these algorithms. For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines. Through MarkLLM, we aim to support researchers while improving the comprehension and involvement of the general public in LLM watermarking technology, fostering consensus and driving further advancements in research and application. Our code is available at https://github.com/THU-BPM/MarkLLM.
- Abstract(参考訳): LLMの透かしは、LLM生成したテキストを識別するために、モデル出力に認識できないがアルゴリズムで検出可能な信号を埋め込んでおり、大きな言語モデルの潜在的な誤用を緩和するのに重要である。
しかし、LLM透かしアルゴリズムの豊富さ、複雑なメカニズム、複雑な評価手順や視点は、研究者やコミュニティにとって、最新の進歩を容易に実験し、理解し、評価するための課題となる。
これらの問題に対処するため,LLMウォーターマーキングのためのオープンソースのツールキットであるMarkLLMを紹介した。
MarkLLMは、LLMウォーターマーキングアルゴリズムを実装するための統一的で拡張可能なフレームワークを提供し、アクセスの容易さを保証するユーザフレンドリーなインターフェースを提供する。
さらに、これらのアルゴリズムの基盤となるメカニズムを自動視覚化することで理解を深める。
評価のために、MarkLLMは3つの視点にまたがる12のツールと、2種類の自動評価パイプラインを提供する。
我々はMarkLLMを通じて、LLM透かし技術における一般大衆の理解と関与を改善し、コンセンサスを育み、研究と応用のさらなる進歩を推進しつつ、研究者を支援することを目指している。
私たちのコードはhttps://github.com/THU-BPM/MarkLLM.orgで公開されています。
関連論文リスト
- Watermarking Large Language Models and the Generated Content: Opportunities and Challenges [18.01886375229288]
生成型大規模言語モデル(LLM)は知的財産権侵害や機械生成誤報の拡散に懸念を抱いている。
ウォーターマーキングは、所有権を確立し、許可されていない使用を防止し、LLM生成コンテンツの起源を追跡できる有望な手法として機能する。
本稿では,LLMをウォーターマークする際の課題と機会を要約し,共有する。
論文 参考訳(メタデータ) (2024-10-24T18:55:33Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - PostMark: A Robust Blackbox Watermark for Large Language Models [56.63560134428716]
モジュール式ポストホックウォーターマーキング手法であるPostMarkを開発した。
PostMarkはロジットアクセスを必要としないため、サードパーティによって実装することができる。
PostMarkは既存のウォーターマーキング手法よりも,攻撃を言い換える方が堅牢であることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:27:14Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
本稿では,大規模言語モデル(LLM)のためのトピックベースの新しい透かしアルゴリズムを提案する。
トピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
提案手法は,テキストトピックを99.99%の信頼度で分類する。
論文 参考訳(メタデータ) (2024-04-02T17:49:40Z) - Learning to Watermark LLM-generated Text via Reinforcement Learning [16.61005372279407]
誤用追跡のためのLCM出力の透かしについて検討する。
出力に信号を埋め込むモデルレベルの透かしを設計する。
強化学習に基づく協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-13T03:43:39Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
大規模言語モデルは、潜在的な誤報を伴う高品質な応答を生成する。
ウォーターマーキングは、テキストに隠れたマーカーを埋め込むことによって、この文脈において重要な意味を持つ。
ウォーターマーキングのための新しい多目的最適化(MOO)手法を提案する。
本手法は,検出性と意味的整合性を同時に達成する。
論文 参考訳(メタデータ) (2024-02-28T05:43:22Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
本稿では,知識注入に基づく大規模言語モデル(LLM)のための新しい透かし手法を提案する。
透かし埋め込みの段階では、まず選択した知識に透かしを埋め込んで、透かし付き知識を得る。
透かし抽出段階では、疑わしいLLMを問うために、透かし付き知識に関する質問を設計する。
実験により, 透かし抽出の成功率は100%近くであり, 提案手法の有効性, 忠実性, ステルス性, 堅牢性を示した。
論文 参考訳(メタデータ) (2023-11-16T03:22:53Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
大規模言語モデル(LLM)は、流布とリアリズムを増大させるテキストを生成する。
既存の透かし方式はエンコーディング非効率であり、多様な情報エンコーディングニーズに柔軟に対応できない。
テキスト透かしを複数ビットでカスタマイズ可能な情報を運ぶことができるCTWL (Codable Text Watermarking for LLMs) を提案する。
論文 参考訳(メタデータ) (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark。
提案手法は,テキストの編集やパラフレージングに頑健で,生成品質,透かし検出の精度が保証されていることを実証する。
論文 参考訳(メタデータ) (2023-06-30T07:24:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。