Improving accuracy of tree-tensor network approach by optimization of network structure
- URL: http://arxiv.org/abs/2501.15514v1
- Date: Sun, 26 Jan 2025 13:11:30 GMT
- Title: Improving accuracy of tree-tensor network approach by optimization of network structure
- Authors: Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, Tomotoshi Nishino,
- Abstract summary: We analyze how detailed updating schemes in the structural optimization algorithm affect its computational accuracy.
We find that for the random XY-exchange model, on the one hand, the algorithm achieves improved accuracy, and the algorithm, which selects the local network structure, is notably effective.
- Score: 0.0
- License:
- Abstract: Numerical methods based on tensor networks have been extensively explored in the research of quantum many-body systems in recent years. It has been recognized that the ability of tensor networks to describe a quantum many-body state crucially depends on the spatial structure of the network. In the previous work, we proposed an algorithm based on tree tensor networks (TTNs) that automatically optimizes the structure of TTN according to the spatial profile of entanglement in the state of interest. In this paper, we precisely analyze how detailed updating schemes in the structural optimization algorithm affect its computational accuracy for the random XY-exchange model under random magnetic fields and the Richardson model. We then find that for the random XY model, on the one hand, the algorithm achieves improved accuracy, and the stochastic algorithm, which selects the local network structure probabilistically, is notably effective. For the Richardson model, on the other hand, the resulting numerical accuracy subtly depends on the initial TTN and the updating schemes. In particular, the algorithm without the stochastic updating scheme certainly improves the accuracy, while the one with the stochastic updates results in poor accuracy due to the effect of randomizing the network structure at the early stage of the calculation. These results indicate that the algorithm successfully improves the accuracy of the numerical calculations for quantum many-body states, while it is essential to appropriately choose the updating scheme as well as the initial TTN structure, depending on the systems treated.
Related papers
- An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes [0.0]
The research has included four original proposals of algorithms dedicated to neural network architecture search.
Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods.
The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
arXiv Detail & Related papers (2023-09-25T11:06:35Z) - Automatic structural optimization of tree tensor networks [0.0]
We propose a TTN algorithm that enables us to automatically optimize the network structure by local reconnections of isometries.
We demonstrate that the entanglement structure embedded in the ground-state of the system can be efficiently visualized as a perfect binary tree in the optimized TTN.
arXiv Detail & Related papers (2022-09-07T14:51:39Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Robust Learning of Parsimonious Deep Neural Networks [0.0]
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network.
We derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection.
We evaluate the proposed algorithm on the MNIST data set and commonly used fully connected and convolutional LeNet architectures.
arXiv Detail & Related papers (2022-05-10T03:38:55Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Comparison of Neural Network based Soft Computing Techniques for
Electromagnetic Modeling of a Microstrip Patch Antenna [0.0]
22 different combinations of networks and training algorithms are used to predict the dimensions of a rectangular microstrip antenna.
It is observed that Reduced Radial Bias network is the most accurate network and Scaled Conjugate Gradient is the most reliable algorithm for electromagnetic modelling.
arXiv Detail & Related papers (2021-09-21T10:08:22Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.