Distributionally Robust Graph Out-of-Distribution Recommendation via Diffusion Model
- URL: http://arxiv.org/abs/2501.15555v1
- Date: Sun, 26 Jan 2025 15:07:52 GMT
- Title: Distributionally Robust Graph Out-of-Distribution Recommendation via Diffusion Model
- Authors: Chu Zhao, Enneng Yang, Yuliang Liang, Jianzhe Zhao, Guibing Guo, Xingwei Wang,
- Abstract summary: We design a Distributionally Robust Graph model for OOD recommendation (DRGO)
Specifically, our method employs a simple and effective diffusion paradigm to alleviate the noisy effect in the latent space.
We provide a theoretical proof of the generalization error bound of DRGO as well as a theoretical analysis of how our approach mitigates noisy sample effects.
- Score: 7.92181856602497
- License:
- Abstract: The distributionally robust optimization (DRO)-based graph neural network methods improve recommendation systems' out-of-distribution (OOD) generalization by optimizing the model's worst-case performance. However, these studies fail to consider the impact of noisy samples in the training data, which results in diminished generalization capabilities and lower accuracy. Through experimental and theoretical analysis, this paper reveals that current DRO-based graph recommendation methods assign greater weight to noise distribution, leading to model parameter learning being dominated by it. When the model overly focuses on fitting noise samples in the training data, it may learn irrelevant or meaningless features that cannot be generalized to OOD data. To address this challenge, we design a Distributionally Robust Graph model for OOD recommendation (DRGO). Specifically, our method first employs a simple and effective diffusion paradigm to alleviate the noisy effect in the latent space. Additionally, an entropy regularization term is introduced in the DRO objective function to avoid extreme sample weights in the worst-case distribution. Finally, we provide a theoretical proof of the generalization error bound of DRGO as well as a theoretical analysis of how our approach mitigates noisy sample effects, which helps to better understand the proposed framework from a theoretical perspective. We conduct extensive experiments on four datasets to evaluate the effectiveness of our framework against three typical distribution shifts, and the results demonstrate its superiority in both independently and identically distributed distributions (IID) and OOD.
Related papers
- DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization [44.291382840373]
This paper addresses the challenge of out-of-distribution generalization in graph machine learning.
Traditional graph learning algorithms falter in real-world scenarios where this assumption fails.
A principal factor contributing to this suboptimal performance is the inherent simplicity bias of neural networks.
arXiv Detail & Related papers (2024-08-08T12:08:55Z) - Graph Representation Learning via Causal Diffusion for Out-of-Distribution Recommendation [8.826417093212099]
Graph Neural Networks (GNNs)-based recommendation algorithms assume that training and testing data are drawn from independent and identically distributed spaces.
This assumption often fails in the presence of out-of-distribution (OOD) data, resulting in significant performance degradation.
We propose a novel approach, graph representation learning via causal diffusion (CausalDiffRec) for OOD recommendation.
arXiv Detail & Related papers (2024-08-01T11:51:52Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z) - Model Agnostic Sample Reweighting for Out-of-Distribution Learning [38.843552982739354]
We propose a principled method, textbfAgnostic samtextbfPLe rtextbfEweighting (textbfMAPLE) to effectively address OOD problem.
Our key idea is to find an effective reweighting of the training samples so that the standard empirical risk minimization training of a large model leads to superior OOD generalization performance.
arXiv Detail & Related papers (2023-01-24T05:11:03Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.