Model Agnostic Sample Reweighting for Out-of-Distribution Learning
- URL: http://arxiv.org/abs/2301.09819v1
- Date: Tue, 24 Jan 2023 05:11:03 GMT
- Title: Model Agnostic Sample Reweighting for Out-of-Distribution Learning
- Authors: Xiao Zhou, Yong Lin, Renjie Pi, Weizhong Zhang, Renzhe Xu, Peng Cui,
Tong Zhang
- Abstract summary: We propose a principled method, textbfAgnostic samtextbfPLe rtextbfEweighting (textbfMAPLE) to effectively address OOD problem.
Our key idea is to find an effective reweighting of the training samples so that the standard empirical risk minimization training of a large model leads to superior OOD generalization performance.
- Score: 38.843552982739354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributionally robust optimization (DRO) and invariant risk minimization
(IRM) are two popular methods proposed to improve out-of-distribution (OOD)
generalization performance of machine learning models. While effective for
small models, it has been observed that these methods can be vulnerable to
overfitting with large overparameterized models. This work proposes a
principled method, \textbf{M}odel \textbf{A}gnostic sam\textbf{PL}e
r\textbf{E}weighting (\textbf{MAPLE}), to effectively address OOD problem,
especially in overparameterized scenarios. Our key idea is to find an effective
reweighting of the training samples so that the standard empirical risk
minimization training of a large model on the weighted training data leads to
superior OOD generalization performance. The overfitting issue is addressed by
considering a bilevel formulation to search for the sample reweighting, in
which the generalization complexity depends on the search space of sample
weights instead of the model size. We present theoretical analysis in linear
case to prove the insensitivity of MAPLE to model size, and empirically verify
its superiority in surpassing state-of-the-art methods by a large margin. Code
is available at \url{https://github.com/x-zho14/MAPLE}.
Related papers
- Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a methodology for finding sequences of machine learning models that are stable across retraining iterations.
We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.
Our method shows stronger stability than greedily trained models with a small, controllable sacrifice in predictive power.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
Existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs.
This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees.
arXiv Detail & Related papers (2022-08-23T12:21:01Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - An interpretable prediction model for longitudinal dispersion
coefficient in natural streams based on evolutionary symbolic regression
network [30.99493442296212]
Various methods have been proposed for predictions of longitudinal dispersion coefficient(LDC)
In this paper, we first present an in-depth analysis of those methods and find out their defects.
We then design a novel symbolic regression method called evolutionary symbolic regression network(ESRN)
arXiv Detail & Related papers (2021-06-17T07:06:05Z) - Detangling robustness in high dimensions: composite versus
model-averaged estimation [11.658462692891355]
Robust methods, though ubiquitous in practice, are yet to be fully understood in the context of regularized estimation and high dimensions.
This paper provides a toolbox to further study robustness in these settings and focuses on prediction.
arXiv Detail & Related papers (2020-06-12T20:40:15Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.