Approximate Message Passing for Bayesian Neural Networks
- URL: http://arxiv.org/abs/2501.15573v1
- Date: Sun, 26 Jan 2025 15:58:42 GMT
- Title: Approximate Message Passing for Bayesian Neural Networks
- Authors: Romeo Sommerfeld, Christian Helms, Ralf Herbrich,
- Abstract summary: We present a novel framework that models the predictive posterior as a factor graph.
We evaluate our approach on CIFAR-10 with a convolutional neural network of roughly 890k parameters and find that it can compete with the SOTA baselines.
While our method scales to an with 5.6 million parameters, further improvements are necessary to match the scale and performance of state-of-the-art variational inference methods.
- Score: 0.8192907805418583
- License:
- Abstract: Bayesian neural networks (BNNs) offer the potential for reliable uncertainty quantification and interpretability, which are critical for trustworthy AI in high-stakes domains. However, existing methods often struggle with issues such as overconfidence, hyperparameter sensitivity, and posterior collapse, leaving room for alternative approaches. In this work, we advance message passing (MP) for BNNs and present a novel framework that models the predictive posterior as a factor graph. To the best of our knowledge, our framework is the first MP method that handles convolutional neural networks and avoids double-counting training data, a limitation of previous MP methods that causes overconfidence. We evaluate our approach on CIFAR-10 with a convolutional neural network of roughly 890k parameters and find that it can compete with the SOTA baselines AdamW and IVON, even having an edge in terms of calibration. On synthetic data, we validate the uncertainty estimates and observe a strong correlation (0.9) between posterior credible intervals and its probability of covering the true data-generating function outside the training range. While our method scales to an MLP with 5.6 million parameters, further improvements are necessary to match the scale and performance of state-of-the-art variational inference methods.
Related papers
- Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
We introduce an approach for uncertainty quantification (UQ) within physics-informed BNNs.
We present case studies for predicting the creep rupture life of steel alloys.
The most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo approximation of the posterior distribution of network parameters.
arXiv Detail & Related papers (2023-11-04T19:40:16Z) - BayesNetCNN: incorporating uncertainty in neural networks for
image-based classification tasks [0.29005223064604074]
We propose a method to convert a standard neural network into a Bayesian neural network.
We estimate the variability of predictions by sampling different networks similar to the original one at each forward pass.
We test our model in a large cohort of brain images from Alzheimer's Disease patients.
arXiv Detail & Related papers (2022-09-27T01:07:19Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
We study approaches to improve uncertainty property of a single network, based on a single, deterministic representation.
We propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection.
arXiv Detail & Related papers (2022-05-01T05:46:13Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
We investigate how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates.
We show that one-vs-all formulations can improve calibration on image classification tasks.
arXiv Detail & Related papers (2020-07-10T01:55:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.