AirIO: Learning Inertial Odometry with Enhanced IMU Feature Observability
- URL: http://arxiv.org/abs/2501.15659v1
- Date: Sun, 26 Jan 2025 19:43:41 GMT
- Title: AirIO: Learning Inertial Odometry with Enhanced IMU Feature Observability
- Authors: Yuheng Qiu, Can Xu, Yutian Chen, Shibo Zhao, Junyi Geng, Sebastian Scherer,
- Abstract summary: Inertial odometry (IO) using only Inertial Measurement Units (IMUs) offers a lightweight and cost-effective solution for Unmanned Aerial Vehicle (UAV) applications.
Existing learning-based IO models often fail to generalize to UAVs due to the highly dynamic and non-linear-flight patterns that differ from pedestrian motion.
In this work, we identify that the conventional practice of transforming raw IMU data to global coordinates undermines the observability of critical kinematic information in UAVs.
- Score: 29.048995291376038
- License:
- Abstract: Inertial odometry (IO) using only Inertial Measurement Units (IMUs) offers a lightweight and cost-effective solution for Unmanned Aerial Vehicle (UAV) applications, yet existing learning-based IO models often fail to generalize to UAVs due to the highly dynamic and non-linear-flight patterns that differ from pedestrian motion. In this work, we identify that the conventional practice of transforming raw IMU data to global coordinates undermines the observability of critical kinematic information in UAVs. By preserving the body-frame representation, our method achieves substantial performance improvements, with a 66.7% average increase in accuracy across three datasets. Furthermore, explicitly encoding attitude information into the motion network results in an additional 23.8% improvement over prior results. Combined with a data-driven IMU correction model (AirIMU) and an uncertainty-aware Extended Kalman Filter (EKF), our approach ensures robust state estimation under aggressive UAV maneuvers without relying on external sensors or control inputs. Notably, our method also demonstrates strong generalizability to unseen data not included in the training set, underscoring its potential for real-world UAV applications.
Related papers
- Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs)
We consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility.
We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space.
arXiv Detail & Related papers (2024-11-21T09:34:48Z) - AirIMU: Learning Uncertainty Propagation for Inertial Odometry [29.093168179953185]
Inertial odometry (IO) using strap-down inertial measurement units (IMUs) is critical in many robotic applications.
We present AirIMU, a hybrid approach to estimate the uncertainty, especially the non-deterministic errors, by data-driven methods.
We demonstrate its effectiveness on various platforms, including hand-held devices, vehicles, and a helicopter that covers a trajectory of 262 kilometers.
arXiv Detail & Related papers (2023-10-07T17:08:22Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
Unsupervised monocular depth and ego-motion estimation has drawn extensive research attention in recent years.
We propose DynaDepth, a novel scale-aware framework that integrates information from vision and IMU motion dynamics.
We validate the effectiveness of DynaDepth by conducting extensive experiments and simulations on the KITTI and Make3D datasets.
arXiv Detail & Related papers (2022-07-11T07:50:22Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
This paper proposes a system incorporating a Long Short-Term Memory (LSTM) Deep Learning Autoencoder based method with a novel dynamic thresholding algorithm and weighted loss function for anomaly detection of a UAV dataset.
The dynamic thresholding and weighted loss functions showed promising improvements to the standard static thresholding method, both in accuracy-related performance metrics and in speed of true fault detection.
arXiv Detail & Related papers (2022-03-09T14:16:14Z) - A Comprehensive Approach for UAV Small Object Detection with
Simulation-based Transfer Learning and Adaptive Fusion [0.0]
Deep learning is widely adopted for UAV object detection whereas researches on this topic are limited by the amount of dataset and small scale of UAV.
To tackle these problems, a novel comprehensive approach that combines transfer learning based on simulation data and adaptive fusion is proposed.
Experiment results demonstrate the effectiveness of simulation-based transfer learning which leads to a 2.7% performance increase on UAV object detection.
arXiv Detail & Related papers (2021-09-04T06:27:13Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.