On-demand storage and retrieval of single photons from a semiconductor quantum dot in a room-temperature atomic vapor memory
- URL: http://arxiv.org/abs/2501.15663v1
- Date: Sun, 26 Jan 2025 19:53:02 GMT
- Title: On-demand storage and retrieval of single photons from a semiconductor quantum dot in a room-temperature atomic vapor memory
- Authors: Benjamin Maaß, Avijit Barua, Norman Vincenz Ewald, Elizabeth Robertson, Kartik Gaur, Suk In Park, Sven Rodt, Jin-Dong Song, Stephan Reitzenstein, Janik Wolters,
- Abstract summary: We show on-demand storage and retrieval of single photons from a semiconductor quantum dot device in a room-temperature atomic vapor memory.
A deterministically fabricated InGaAs quantum dot light source emits single photons at the wavelength of the cesium D1 line at 895,nm.
We show control over the interaction between the single photons and the atomic vapor, allowing for variable retrieval times of up to 19.8(3),ns at an internal efficiency of $eta_mathrmint=0.6(1)%$.
- Score: 0.0
- License:
- Abstract: Interfacing light from solid-state single-photon sources with scalable and robust room-temperature quantum memories has been a long-standing challenge in photonic quantum information technologies due to inherent noise processes and time-scale mismatches between the operating conditions of solid-state and atomic systems. Here, we demonstrate on-demand storage and retrieval of single photons from a semiconductor quantum dot device in a room-temperature atomic vapor memory. A deterministically fabricated InGaAs quantum dot light source emits single photons at the wavelength of the cesium D1 line at 895\,nm which exhibit an inhomogeneously broadened linewidth of 5.1(7)\,GHz and are subsequently stored in a low-noise ladder-type cesium vapor memory. We show control over the interaction between the single photons and the atomic vapor, allowing for variable retrieval times of up to 19.8(3)\,ns at an internal efficiency of $\eta_\mathrm{int}=0.6(1)\%$. Our results significantly expand the application space of both room-temperature vapor memories and semiconductor quantum dots in future quantum network architectures.
Related papers
- Room-temperature ladder-type optical memory compatible with single photons from InGaAs quantum dots [0.0]
We experimentally realize a room-temperature ladder-type atomic vapor memory that operates on the Cs D1 line.
The memory achieves a maximum internal storage efficiency of $eta_textint=15(1)%$.
These results provide clear prospects for the development of a heterogeneous on-demand quantum light interface.
arXiv Detail & Related papers (2024-02-22T16:41:34Z) - Deterministic Storage and Retrieval of Telecom Quantum Dot Photons
Interfaced with an Atomic Quantum Memory [0.0]
We store photons from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths.
The signal-to-noise ratio of the retrieved photons is $18.2pm 0.6$, limited only by detector dark counts.
This demonstration paves the way to quantum technologies that rely on distributed entanglement, and is especially suited for photonic quantum networks.
arXiv Detail & Related papers (2023-03-07T19:00:01Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory [0.0]
Interfaced single-photon sources and quantum memories for photons together form a foundational component of quantum technology.
We build and successfully interfaced a heralded single-photon source based on cavity-enhanced spontaneous parametric down-conversion.
For the first time, we demonstrate single-photon storage and retrieval in a ground-state vapor cell memory.
arXiv Detail & Related papers (2022-04-26T15:46:20Z) - Efficient, ever-ready quantum memory at room temperature for single
photons [0.4047301375093173]
Quantum memories will be an essential building block of large scale networked quantum systems.
Memory efficiencies above 50% are required to be operating above the quantum no-cloning limit.
In this paper we explore the combination of an ultralow spectral bandwidth source of single photons from cavity-enhanced spontaneous parametric down-conversion with a gas-ensemble atomic memory.
arXiv Detail & Related papers (2022-03-23T00:34:18Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.