論文の概要: A Survey on Computational Pathology Foundation Models: Datasets, Adaptation Strategies, and Evaluation Tasks
- arxiv url: http://arxiv.org/abs/2501.15724v2
- Date: Wed, 26 Feb 2025 03:14:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:54:27.153946
- Title: A Survey on Computational Pathology Foundation Models: Datasets, Adaptation Strategies, and Evaluation Tasks
- Title(参考訳): 計算病理基盤モデルに関する調査研究:データセット,適応戦略,評価課題
- Authors: Dong Li, Guihong Wan, Xintao Wu, Xinyu Wu, Ajit J. Nirmal, Christine G. Lian, Peter K. Sorger, Yevgeniy R. Semenov, Chen Zhao,
- Abstract要約: 計算病理基盤モデル (CPathFMs) は, 組織学的データを解析するための強力なアプローチとして出現している。
これらのモデルは、セグメンテーション、分類、バイオマーカー発見のような複雑な病理タスクを自動化することを約束している。
しかし、CPathFMsの開発は、データアクセシビリティの制限、データセット間の高いばらつき、標準化された評価ベンチマークの欠如など、大きな課題を呈している。
- 参考スコア(独自算出の注目度): 22.806228975730008
- License:
- Abstract: Computational pathology foundation models (CPathFMs) have emerged as a powerful approach for analyzing histopathological data, leveraging self-supervised learning to extract robust feature representations from unlabeled whole-slide images. These models, categorized into uni-modal and multi-modal frameworks, have demonstrated promise in automating complex pathology tasks such as segmentation, classification, and biomarker discovery. However, the development of CPathFMs presents significant challenges, such as limited data accessibility, high variability across datasets, the necessity for domain-specific adaptation, and the lack of standardized evaluation benchmarks. This survey provides a comprehensive review of CPathFMs in computational pathology, focusing on datasets, adaptation strategies, and evaluation tasks. We analyze key techniques, such as contrastive learning and multi-modal integration, and highlight existing gaps in current research. Finally, we explore future directions from four perspectives for advancing CPathFMs. This survey serves as a valuable resource for researchers, clinicians, and AI practitioners, guiding the advancement of CPathFMs toward robust and clinically applicable AI-driven pathology solutions.
- Abstract(参考訳): 計算病理基盤モデル (CPathFMs) は、自己教師あり学習を利用して、ラベルのない全スライド画像からロバストな特徴表現を抽出し、病理組織データを解析するための強力なアプローチとして登場した。
これらのモデルは、ユニモーダルおよびマルチモーダルのフレームワークに分類され、セグメンテーション、分類、バイオマーカー発見といった複雑な病理タスクを自動化することを約束している。
しかし、CPathFMsの開発は、データアクセシビリティの制限、データセット間の高いばらつき、ドメイン固有の適応の必要性、標準化された評価ベンチマークの欠如など、大きな課題を呈している。
本調査では,計算病理学におけるCPathFMの総合的なレビューを行い,データセット,適応戦略,評価タスクに着目した。
我々は、コントラスト学習やマルチモーダル統合といった重要な技術を分析し、現在の研究における既存のギャップを浮き彫りにする。
最後に,CPathFMの進歩に向けた4つの視点から今後の方向性を探る。
この調査は、研究者、臨床医、AI実践者にとって貴重なリソースとなり、CPathFMの堅牢で臨床応用可能なAI駆動型病理ソリューションへの進歩を導く。
関連論文リスト
- PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology [7.87900104748629]
6つの異なるタスクをカバーする約45,000のケースのデータセットを慎重にコンパイルしました。
特にLLaVA, Qwen-VL, InternLMを微調整したマルチモーダル大規模モデルで, このデータセットを用いて命令ベースの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-13T17:05:06Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
ファンデーションモデル(FM)は、教師なし事前訓練、自己教師付き学習、微調整の指導、人間のフィードバックからの強化学習など、膨大なデータセットで訓練される。
これらのモデルは、臨床報告、診断画像、マルチモーダル患者間相互作用などの多様なデータフォームの処理を必要とする生体医学的応用に不可欠である。
FLをこれらの洗練されたモデルに組み込むことは、機密性の高い医療データのプライバシーを守りながら、分析能力を活用するという有望な戦略を示す。
論文 参考訳(メタデータ) (2024-05-10T19:22:24Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - Domain-specific optimization and diverse evaluation of self-supervised
models for histopathology [9.450129206898115]
組織学におけるタスク固有の深層学習モデルは、診断、臨床研究、精密医療を改善するための有望な機会を提供する。
自己教師型学習(SSL)による病理組織学の基礎モデルの開発と評価について述べる。
論文 参考訳(メタデータ) (2023-10-20T03:38:07Z) - Framework based on complex networks to model and mine patient pathways [0.6749750044497732]
いわゆる「患者の道」は、臨床および組織的な決定を支援する新しい研究分野である。
i) マルチアスペクトグラフに基づく経路モデル, (ii) 経過時間を考慮した経路比較のための新しい相似性測定, および (iii) 経路の最も関連性の高いステップを発見するための従来の集中度尺度に基づくマイニング手法からなるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-25T15:11:52Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。