論文の概要: Leveraging Video Vision Transformer for Alzheimer's Disease Diagnosis from 3D Brain MRI
- arxiv url: http://arxiv.org/abs/2501.15733v1
- Date: Mon, 27 Jan 2025 02:18:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:58:04.005829
- Title: Leveraging Video Vision Transformer for Alzheimer's Disease Diagnosis from 3D Brain MRI
- Title(参考訳): 3次元脳MRIによるアルツハイマー病診断のためのビデオビジョン変換器の活用
- Authors: Taymaz Akan, Sait Alp, Md. Shenuarin Bhuiyan, Elizabeth A. Disbrow, Steven A. Conrad, John A. Vanchiere, Christopher G. Kevil, Mohammad A. N. Bhuiyan,
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、世界中の何百万もの疾患に影響を及ぼす神経変性疾患である。
本稿では3次元脳MRIデータ解析にビデオビジョントランスフォーマーを利用したAD診断手法「ViTranZheimer」を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide, necessitating early and accurate diagnosis for optimal patient management. In recent years, advancements in deep learning have shown remarkable potential in medical image analysis. Methods In this study, we present "ViTranZheimer," an AD diagnosis approach which leverages video vision transformers to analyze 3D brain MRI data. By treating the 3D MRI volumes as videos, we exploit the temporal dependencies between slices to capture intricate structural relationships. The video vision transformer's self-attention mechanisms enable the model to learn long-range dependencies and identify subtle patterns that may indicate AD progression. Our proposed deep learning framework seeks to enhance the accuracy and sensitivity of AD diagnosis, empowering clinicians with a tool for early detection and intervention. We validate the performance of the video vision transformer using the ADNI dataset and conduct comparative analyses with other relevant models. Results The proposed ViTranZheimer model is compared with two hybrid models, CNN-BiLSTM and ViT-BiLSTM. CNN-BiLSTM is the combination of a convolutional neural network (CNN) and a bidirectional long-short-term memory network (BiLSTM), while ViT-BiLSTM is the combination of a vision transformer (ViT) with BiLSTM. The accuracy levels achieved in the ViTranZheimer, CNN-BiLSTM, and ViT-BiLSTM models are 98.6%, 96.479%, and 97.465%, respectively. ViTranZheimer demonstrated the highest accuracy at 98.6%, outperforming other models in this evaluation metric, indicating its superior performance in this specific evaluation metric. Conclusion This research advances the understanding of applying deep learning techniques in neuroimaging and Alzheimer's disease research, paving the way for earlier and less invasive clinical diagnosis.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's disease, AD)は、世界中の何百万もの疾患に影響を及ぼし、最適な患者管理のために早期かつ正確な診断を必要とする神経変性疾患である。
近年, 深層学習の進歩は, 医用画像解析において顕著な可能性を示している。
本稿では3次元脳MRIデータの解析にビデオビジョントランスフォーマーを利用するAD診断手法「ViTranZheimer」を提案する。
3次元MRIボリュームをビデオとして扱うことで、スライス間の時間的依存関係を利用して複雑な構造的関係を捉える。
ビデオビジョン変換器の自己注意機構により、モデルは長距離依存を学習し、AD進行を示す可能性のある微妙なパターンを識別することができる。
提案するディープラーニングフレームワークは,AD診断の精度と感度を高めることを目的として,早期発見と介入のためのツールを臨床医に提供した。
ビデオビジョン変換器の性能をADNIデータセットを用いて検証し,他のモデルとの比較分析を行った。
The proposed ViTranZheimer model are compared with two hybrid model, CNN-BiLSTM and ViT-BiLSTM。
CNN-BiLSTMは畳み込みニューラルネットワーク(CNN)と双方向長短メモリネットワーク(BiLSTM)の組み合わせであり、ViT-BiLSTMは視覚変換器(ViT)とBiLSTMの組み合わせである。
ViTranZheimer、CNN-BiLSTM、ViT-BiLSTMの各モデルの精度は98.6%、96.479%、97.465%である。
ViTranZheimerは98.6%の精度を示し、この評価基準では他のモデルよりも優れており、この評価基準では優れた性能を示している。
結論 この研究は、神経画像学とアルツハイマー病研究に深層学習技術を適用することの理解を深め、早期かつより侵襲的な臨床診断への道を開いた。
関連論文リスト
- ScaleMAI: Accelerating the Development of Trusted Datasets and AI Models [46.80682547774335]
我々はAI統合データキュレーションとアノテーションのエージェントであるScaleMAIを提案する。
まず、ScaleMAIは25,362個のCTスキャンを作成した。
第2に、プログレッシブなヒューマン・イン・ザ・ループのイテレーションを通じて、ScaleMAIはFragship AI Modelを提供する。
論文 参考訳(メタデータ) (2025-01-06T22:12:00Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Enhancing MRI-Based Classification of Alzheimer's Disease with Explainable 3D Hybrid Compact Convolutional Transformers [13.743241062824548]
アルツハイマー病(AD: Alzheimer's disease)は、世界的な健康問題である。
従来の分析手法は、AD識別に不可欠な複雑な3Dパターンの識別に苦慮することが多い。
3D Hybrid Convolutional Transformer 3D (HCCT) について紹介する。
論文 参考訳(メタデータ) (2024-03-24T14:35:06Z) - Hybridized Convolutional Neural Networks and Long Short-Term Memory for
Improved Alzheimer's Disease Diagnosis from MRI Scans [2.621434923709917]
本研究では,CNNモデルの特徴抽出機能とLSTMモデルの検出機能を組み合わせたハイブリッドモデルを提案する。
ADNIデータセットを利用したハイブリッドモデルのトレーニング。
モデルの精度は98.8%、感度は100%、特異度は76%に達した。
論文 参考訳(メタデータ) (2024-03-08T14:34:32Z) - Multiple Instance Learning for Glioma Diagnosis using Hematoxylin and
Eosin Whole Slide Images: An Indian Cohort Study [31.789472128764036]
本研究は, 厳密な複数事例学習実験から得られた知見をもとに, 患者ケアを推し進めるものである。
複数のデータセットにまたがるグリオーマサブタイプ分類において、新しいパフォーマンスベンチマークを確立する。
論文 参考訳(メタデータ) (2024-02-24T14:59:19Z) - Triamese-ViT: A 3D-Aware Method for Robust Brain Age Estimation from
MRIs [0.7770029179741429]
本稿では,脳年齢推定のためのViTモデルの革新的適応であるTriamese-ViTを紹介する。
1351のMRIスキャンでテストした結果、Triamese-ViTは平均絶対誤差(MAE)が3.84、スピアマン相関係数が0.9、スピアマン相関係数が-0.29である。
論文 参考訳(メタデータ) (2024-01-13T03:29:56Z) - Vision Transformers and Bi-LSTM for Alzheimer's Disease Diagnosis from
3D MRI [0.0]
早期に診断された場合、アルツハイマー病(AD)を治療・治療することができる。
本研究では、視覚変換器(ViT)とバイLSTMを用いて、アルツハイマー病の診断のためのMRI画像の処理を提案する。
提案手法は,ADの診断のための精度,精度,Fスコア,リコールの点で良好に機能する。
論文 参考訳(メタデータ) (2024-01-06T06:11:03Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。