論文の概要: SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model
- arxiv url: http://arxiv.org/abs/2501.15830v2
- Date: Tue, 28 Jan 2025 09:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 13:21:22.848993
- Title: SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model
- Title(参考訳): SpaceVLA:ビジュアル・ランゲージ・アクション・モデルのための空間表現の探索
- Authors: Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu, Bin Zhao, Dong Wang, Xuelong Li,
- Abstract要約: 空間理解はロボット操作のキーポイントです
本研究では,ロボット基盤モデルのための効果的な空間表現を探索する空間VLAを提案する。
提案したAdaptive Action Gridsは,事前学習したSpatialVLAモデルを微調整し,新しいシミュレーションと実世界のセットアップを実現するための,新しい効果的な方法を提供する。
- 参考スコア(独自算出の注目度): 45.03115608632622
- License:
- Abstract: In this paper, we claim that spatial understanding is the keypoint in robot manipulation, and propose SpatialVLA to explore effective spatial representations for the robot foundation model. Specifically, we introduce Ego3D Position Encoding to inject 3D information into the input observations of the visual-language-action model, and propose Adaptive Action Grids to represent spatial robot movement actions with adaptive discretized action grids, facilitating learning generalizable and transferrable spatial action knowledge for cross-robot control. SpatialVLA is first pre-trained on top of a vision-language model with 1.1 Million real-world robot episodes, to learn a generalist manipulation policy across multiple robot environments and tasks. After pre-training, SpatialVLA is directly applied to perform numerous tasks in a zero-shot manner. The superior results in both simulation and real-world robots demonstrate its advantage of inferring complex robot motion trajectories and its strong in-domain multi-task generalization ability. We further show the proposed Adaptive Action Grids offer a new and effective way to fine-tune the pre-trained SpatialVLA model for new simulation and real-world setups, where the pre-learned action grids are re-discretized to capture robot-specific spatial action movements of new setups. The superior results from extensive evaluations demonstrate the exceptional in-distribution generalization and out-of-distribution adaptation capability, highlighting the crucial benefit of the proposed spatial-aware representations for generalist robot policy learning. All the details and codes will be open-sourced.
- Abstract(参考訳): 本稿では,ロボット操作における空間理解が重要なポイントであると主張し,ロボット基盤モデルのための効果的な空間表現を探索するSpatialVLAを提案する。
具体的には,視覚・言語・アクションモデルの入力観測に3D情報を注入するためのEgo3D位置符号化を導入し,適応的な離散化されたアクショングリッドで空間ロボットの動きを表現する適応的アクショングリッドを提案し,ロボット間制御のための一般化可能な空間行動知識の伝達を容易にする。
SpaceVLAは、複数のロボット環境やタスクにまたがる汎用的な操作ポリシーを学ぶために、1100万の現実世界のロボットエピソードを持つビジョン言語モデル上で、最初に事前訓練された。
事前訓練後、SpatialVLAはゼロショット方式で多数のタスクを実行するために直接適用される。
シミュレーションと実世界のロボットの双方における優れた結果は、複雑なロボットの運動軌跡と強力なドメイン内マルチタスク一般化能力を推定する利点を示す。
さらに,提案したAdaptive Action Gridsは,事前学習したSpatialVLAモデルを,新たなシミュレーションと実世界のセットアップのために微調整し,事前学習したアクショングリッドを再抽出して,新たなセットアップのロボット固有の空間行動運動をキャプチャする,新しい効果的な方法を提供する。
広汎な評価による優れた結果は、一般論的なロボット政策学習において提案された空間認識表現の重要な利点を浮き彫りにして、非分配的一般化とアウト・オブ・ディストリビューション適応能力を示す。
詳細とコードは、すべてオープンソースになる。
関連論文リスト
- Latent Action Pretraining from Videos [156.88613023078778]
一般行動モデル(LAPA)のための潜在行動事前訓練について紹介する。
LAPA(英: LAPA)は、VLA(Vision-Language-Action)モデルに接地型ロボットアクションラベルを含まない教師なしの訓練方法である。
本稿では,ロボットアクションラベルを持たないインターネット規模のビデオから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T16:28:09Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
学習したロボット制御ポリシーの鍵となる制限は、トレーニングデータの外部で一般化できないことである。
視覚言語行動モデル(VLA)に関する最近の研究は、大規模なインターネット事前学習型視覚言語モデルを使用することで、その堅牢性と一般化能力を大幅に向上させることができることを示した。
ロボットの動作を予測する前に、VLAに対して、計画、サブタスク、動作、視覚的接地機能について複数の推論を行うために、VLAに対してEmbodied Chain-of-Thought Reasoning (ECoT)を導入する。
論文 参考訳(メタデータ) (2024-07-11T17:31:01Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
本研究は,ロボットにおける複数のタスクの出発点として機能する汎用表現を事前学習するためのパラダイムを導入する。
本稿では,ロボットデータから直接表現を自己管理的に構築することを目的として,PACT(Perception-Action Causal Transformer)を提案する。
より大規模な事前学習モデル上に小さなタスク特化ネットワークを微調整すると、同時に1つのモデルをスクラッチからトレーニングするのに比べ、性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-09-22T16:20:17Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。