Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy Networking
- URL: http://arxiv.org/abs/2501.15928v1
- Date: Mon, 27 Jan 2025 10:27:15 GMT
- Title: Generative AI for Lyapunov Optimization Theory in UAV-based Low-Altitude Economy Networking
- Authors: Zhang Liu, Dusit Niyato, Jiacheng Wang, Geng Sun, Lianfen Huang, Zhibin Gao, Xianbin Wang,
- Abstract summary: We introduce the fundamentals of Lyapunov optimization theory and analyze the limitations of both conventional methods and traditional AI-enabled approaches.
We develop a Lyapunov-guided generative diffusion model-based reinforcement learning framework and validate its effectiveness through a UAV-based LAE networking case study.
- Score: 49.225507258297725
- License:
- Abstract: Lyapunov optimization theory has recently emerged as a powerful mathematical framework for solving complex stochastic optimization problems by transforming long-term objectives into a sequence of real-time short-term decisions while ensuring system stability. This theory is particularly valuable in unmanned aerial vehicle (UAV)-based low-altitude economy (LAE) networking scenarios, where it could effectively address inherent challenges of dynamic network conditions, multiple optimization objectives, and stability requirements. Recently, generative artificial intelligence (GenAI) has garnered significant attention for its unprecedented capability to generate diverse digital content. Extending beyond content generation, in this paper, we propose a framework integrating generative diffusion models with reinforcement learning to address Lyapunov optimization problems in UAV-based LAE networking. We begin by introducing the fundamentals of Lyapunov optimization theory and analyzing the limitations of both conventional methods and traditional AI-enabled approaches. We then examine various GenAI models and comprehensively analyze their potential contributions to Lyapunov optimization. Subsequently, we develop a Lyapunov-guided generative diffusion model-based reinforcement learning framework and validate its effectiveness through a UAV-based LAE networking case study. Finally, we outline several directions for future research.
Related papers
- Conformal Symplectic Optimization for Stable Reinforcement Learning [21.491621524500736]
By utilizing relativistic kinetic energy, RAD incorporates from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal influences.
Notably, RAD achieves up to a 155.1% performance improvement, showcasing its efficacy in training Atari games.
arXiv Detail & Related papers (2024-12-03T09:07:31Z) - Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
arXiv Detail & Related papers (2024-09-25T09:27:17Z) - OpticGAI: Generative AI-aided Deep Reinforcement Learning for Optical Networks Optimization [21.282153851021796]
We introduce OpticGAI, the AI-generated policy design paradigm for optical networks.
In detail, it is implemented as a novel DRL framework that utilizes generative models to learn the optimal policy network.
We show that OpticGAI achieves the highest reward and the lowest blocking rate of both RWA and RMSA problems.
arXiv Detail & Related papers (2024-06-22T17:59:50Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Multi-Agent RL-Based Industrial AIGC Service Offloading over Wireless Edge Networks [19.518346220904732]
We propose a generative model-driven industrial AIGC collaborative edge learning framework.
This framework aims to facilitate efficient few-shot learning by leveraging realistic sample synthesis and edge-based optimization capabilities.
arXiv Detail & Related papers (2024-05-05T15:31:47Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - LyaNet: A Lyapunov Framework for Training Neural ODEs [59.73633363494646]
We propose a method for training ordinary differential equations by using a control-theoretic Lyapunov condition for stability.
Our approach, called LyaNet, is based on a novel Lyapunov loss formulation that encourages the inference dynamics to converge quickly to the correct prediction.
arXiv Detail & Related papers (2022-02-05T10:13:14Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.