Rethinking the Bias of Foundation Model under Long-tailed Distribution
- URL: http://arxiv.org/abs/2501.15955v1
- Date: Mon, 27 Jan 2025 11:00:19 GMT
- Title: Rethinking the Bias of Foundation Model under Long-tailed Distribution
- Authors: Jiahao Chen, Bin Qin, Jiangmeng Li, Hao Chen, Bing Su,
- Abstract summary: We find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance.
During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies.
We propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels.
- Score: 18.80942166783087
- License:
- Abstract: Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about $1.67\%$ on each dataset.
Related papers
- Mind the Graph When Balancing Data for Fairness or Robustness [73.03155969727038]
We define conditions on the training distribution for data balancing to lead to fair or robust models.
Our results show that, in many cases, the balanced distribution does not correspond to selectively removing the undesired dependencies.
Overall, our results highlight the importance of taking the causal graph into account before performing data balancing.
arXiv Detail & Related papers (2024-06-25T10:16:19Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
arXiv Detail & Related papers (2024-02-28T18:08:03Z) - Alleviating the Effect of Data Imbalance on Adversarial Training [26.36714114672729]
We study adversarial training on datasets that obey the long-tailed distribution.
We propose a new adversarial training framework -- Re-balancing Adversarial Training (REAT)
arXiv Detail & Related papers (2023-07-14T07:01:48Z) - The Effect of Balancing Methods on Model Behavior in Imbalanced
Classification Problems [4.370097023410272]
Imbalanced data poses a challenge in classification as model performance is affected by insufficient learning from minority classes.
This study addresses a more challenging aspect of balancing methods - their impact on model behavior.
To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing.
arXiv Detail & Related papers (2023-06-30T22:25:01Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for
Imbalanced Classification [11.673344551762822]
Deep neural networks generally perform poorly with datasets that suffer from quantity imbalance and classification difficulty imbalance between different classes.
A phased progressive learning schedule was proposed for smoothly transferring the training emphasis from representation learning to upper classifier training.
Our code will be open source soon.
arXiv Detail & Related papers (2022-05-24T14:46:39Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
We provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features.
We precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach.
Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies.
arXiv Detail & Related papers (2020-02-24T19:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.