論文の概要: Multi-View Attention Syntactic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2501.15968v1
- Date: Mon, 27 Jan 2025 11:26:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:35.673005
- Title: Multi-View Attention Syntactic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
- Title(参考訳): Aspect-based Sentiment Analysisのためのマルチビューアテンションシンタクティック強化グラフ畳み込みネットワーク
- Authors: Xiang Huang, Hao Peng, Shuo Sun, Zhifeng Hao, Hui Lin, Shuhai Wang,
- Abstract要約: Aspect-based Sentiment Analysis (ABSA) は、文中のアスペクトワードの感情極性を予測するタスクである。
近年, グラフニューラルネットワーク(GNN)を導入して, 依存ツリーの構文構造情報を取得することが, ABSAの強化に有効なパラダイムであることが証明されている。
そこで本稿では,注目機構を用いた多視点統合グラフ畳み込みネットワーク(MASGCN)を提案する。
- 参考スコア(独自算出の注目度): 33.68786386700902
- License:
- Abstract: Aspect-based Sentiment Analysis (ABSA) is the task aimed at predicting the sentiment polarity of aspect words within sentences. Recently, incorporating graph neural networks (GNNs) to capture additional syntactic structure information in the dependency tree derived from syntactic dependency parsing has been proven to be an effective paradigm for boosting ABSA. Despite GNNs enhancing model capability by fusing more types of information, most works only utilize a single topology view of the dependency tree or simply conflate different perspectives of information without distinction, which limits the model performance. To address these challenges, in this paper, we propose a new multi-view attention syntactic enhanced graph convolutional network (MASGCN) that weighs different syntactic information of views using attention mechanisms. Specifically, we first construct distance mask matrices from the dependency tree to obtain multiple subgraph views for GNNs. To aggregate features from different views, we propose a multi-view attention mechanism to calculate the attention weights of views. Furthermore, to incorporate more syntactic information, we fuse the dependency type information matrix into the adjacency matrices and present a structural entropy loss to learn the dependency type adjacency matrix. Comprehensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art methods. The codes and datasets are available at https://github.com/SELGroup/MASGCN.
- Abstract(参考訳): Aspect-based Sentiment Analysis (ABSA) は、文中のアスペクトワードの感情極性を予測するタスクである。
近年, グラフニューラルネットワーク(GNN)を導入して, ABSAの強化に有効なパラダイムであることが証明されている。
GNNは、より多くの種類の情報を融合することによってモデル能力を向上させるが、ほとんどの研究は、依存ツリーの1つのトポロジビューを利用するか、区別なしに情報の異なる視点を分割するだけで、モデルの性能が制限される。
これらの課題に対処するため,本論文では,注目機構を用いたビューの構文情報を重み付けする,マルチビュー・アテンション・シンタクティック拡張グラフ畳み込みネットワーク(MASGCN)を提案する。
具体的には、まず依存木から距離マスク行列を構築し、GNNの複数のサブグラフビューを得る。
異なる視点から特徴を集約するために,視点の注目重みを計算する多視点アテンション機構を提案する。
さらに、より構文的な情報を組み込むために、依存型情報行列を隣接行列に融合し、従属型情報行列を学習するための構造エントロピー損失を示す。
4つのベンチマークデータセットの総合的な実験により、我々のモデルは最先端の手法より優れていることが示された。
コードとデータセットはhttps://github.com/SELGroup/MASGCN.comで公開されている。
関連論文リスト
- S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis [19.740223755240734]
ABSAのための構文強化グラフ構造学習にセグメンテーションを取り入れた2$GSLを提案する。
S$2$GSLはセグメント対応セマンティックグラフ学習と構文ベースの潜在グラフ学習を備えている。
論文 参考訳(メタデータ) (2024-06-05T03:44:35Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - RDGCN: Reinforced Dependency Graph Convolutional Network for
Aspect-based Sentiment Analysis [43.715099882489376]
距離と型の両方のビューにおける依存性の重要度を計算するために,新たに強化された依存グラフ畳み込みネットワーク(RDGCN)を提案する。
この基準の下で、重み分布探索と相似性制御に強化学習を利用する距離重要度関数を設計する。
3つの一般的なデータセットに関する総合的な実験は、基準と重要度関数の有効性を示す。
論文 参考訳(メタデータ) (2023-11-08T05:37:49Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Better Feature Integration for Named Entity Recognition [30.676768644145]
両タイプの機能をSynergized-LSTM(Syn-LSTM)に組み込むためのシンプルで堅牢なソリューションを提案する。
その結果、提案モデルが従来のアプローチよりも優れたパフォーマンスを実現し、パラメータを少なくできることが示された。
論文 参考訳(メタデータ) (2021-04-12T09:55:06Z) - Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level
Sentiment Classification [37.936820137442254]
本研究では, グラフアンサンブル手法であるGraphMergeを提案する。
各依存ツリーに1組のモデルパラメータを割り当てる代わりに、まず異なるパースから依存関係を結合し、結果のグラフにGNNを適用します。
SemEval 2014 Task 4とACL 14のTwitterデータセットの実験では、GraphMergeモデルは単一の依存ツリーでモデルを上回るだけでなく、モデルパラメータを追加せずに他のアンサンブルモジュールを上回ります。
論文 参考訳(メタデータ) (2021-03-12T22:27:23Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional
Networks and Syntax-based Regulation [89.38054401427173]
Aspect-based Sentiment Analysis (ABSA) は、特定の側面に向けて文の感情極性を予測する。
依存関係ツリーは、ABSAの最先端のパフォーマンスを生成するために、ディープラーニングモデルに統合することができる。
本稿では,この2つの課題を克服するために,グラフに基づく新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2020-10-26T07:36:24Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。