Braiding Majoranas in a linear quantum dot-superconductor array: Mitigating the errors from Coulomb repulsion and residual tunneling
- URL: http://arxiv.org/abs/2501.16056v1
- Date: Mon, 27 Jan 2025 13:53:14 GMT
- Title: Braiding Majoranas in a linear quantum dot-superconductor array: Mitigating the errors from Coulomb repulsion and residual tunneling
- Authors: Sebastian Miles, Francesco Zatelli, A. Mert Bozkurt, Michael Wimmer, Chun-Xiao Liu,
- Abstract summary: We propose a minimal braiding setup in a linear array of quantum dots consisting of two minimal Kitaev chains coupled through an ancillary, normal quantum dot.
We find that the errors caused by either of these effects can be efficiently mitigated by optimal control of the ancillary quantum dot that mediates the exchange of the non-Abelian anyons.
- Score: 7.493142873994949
- License:
- Abstract: Exchanging the positions of two non-Abelian anyons transforms between many-body wavefunctions within a degenerate ground-state manifold. This behavior is fundamentally distinct from fermions, bosons and Abelian anyons. Recently, quantum dot-superconductor arrays have emerged as a promising platform for creating topological Kitaev chains that can host non-Abelian Majorana zero modes. In this work, we propose a minimal braiding setup in a linear array of quantum dots consisting of two minimal Kitaev chains coupled through an ancillary, normal quantum dot. We focus on the physical effects that are peculiar to quantum dot devices, such as interdot Coulomb repulsion and residual single electron tunneling. We find that the errors caused by either of these effects can be efficiently mitigated by optimal control of the ancillary quantum dot that mediates the exchange of the non-Abelian anyons. Moreover, we propose experimentally accessible methods to find this optimal operating regime and predict signatures of a successful Majorana braiding experiment.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Minimal quantum dot based Kitaev chain with only local superconducting
proximity effect [0.0]
We show that it is possible to avoid some of the main experimental hurdles by using only local proximity effect on each quantum dot.
There is no need for narrow superconducting couplers, additional Andreev bound states, or spatially varying magnetic fields.
We use a realistic spinful, interacting model and show that high-quality Majorana bound states can be generated already in a double quantum dot.
arXiv Detail & Related papers (2023-10-05T13:35:27Z) - A quantum fluctuation description of charge qubits [0.0]
We consider a specific instance of a superconducting circuit, the so-called charge-qubit, consisting of a capacitor and a Josephson junction.
We derive the Hamiltonian governing the quantum behavior of the circuit in the limit of a large number $N$ of quasi-spins.
arXiv Detail & Related papers (2023-04-26T07:43:43Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Probing quantum many-body correlations by universal ramping dynamics [1.8437783410151665]
We present a novel method of probing quantum many-body correlation by ramping dynamics.
We show that the first-order correction on the finite ramping velocity is universal and path-independent.
Because our proposal uses the most common experimental protocol, we envision that our method can find broad applications in probing various quantum systems.
arXiv Detail & Related papers (2021-09-01T09:32:45Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.