Quantum dynamics of semiconductor quantum dot Josephson junctions
- URL: http://arxiv.org/abs/2402.10330v2
- Date: Mon, 02 Jun 2025 14:55:43 GMT
- Title: Quantum dynamics of semiconductor quantum dot Josephson junctions
- Authors: Utkan Güngördü, Rusko Ruskov, Silas Hoffman, Kyle Serniak, Andrew J. Kerman, Charles Tahan,
- Abstract summary: Josephson junctions have been used to realize a variety of voltage-tunable superconducting quantum devices.<n>This work employs a path-integral formulation where the phase quantum dynamics is obtained self-consistently from an underlying many-body formalism.<n>Results can be summarized in terms of a single-particle Hamiltonian, which can be directly compared to that of an ordinary Josephson junction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Josephson junctions constructed from superconductor-semiconductor-superconductor heterostructures have been used to realize a variety of voltage-tunable superconducting quantum devices, including qubits and parametric amplifiers. To date theoretical descriptions of these systems have been restricted to small quantum fluctuations of the junction phase, making them inapplicable to many experiments. In this work we relax this, employing a path-integral formulation where the phase quantum dynamics is obtained self-consistently from an underlying many-body formalism. Our method recovers previously-known results for small phase fluctuations, and predicts new effects outside of that limit: (i) system capacitances undergo a gate-voltage-dependent renormalization; and (ii) an additional charge offset appears for asymmetric junctions. Our main results can be summarized in terms of a single-particle Hamiltonian, which can be directly compared to that of an ordinary Josephson junction. This more general theory could be a first step towards designing new quantum devices that go qualitatively beyond voltage-tunable variants of previously-known circuits.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Mesoscopic theory of the Josephson junction [44.99833362998488]
We derive a mesoscopic theory of the Josephson junction from non-relativistic scalar electrodynamics.
By providing an ab initio derivation of the charge qubit Hamiltonian, we progress toward the quantum engineering of superconducting circuits at the subnanometer scale.
arXiv Detail & Related papers (2024-11-08T15:29:07Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Measurement of Many-Body Quantum Correlations in Superconducting Circuits [2.209921757303168]
We propose a probe circuit capable of reading out many-body correlations in an analog quantum simulator.
We demonstrate the capabilities of this design in the context of an LC-ladder with a quantum impurity.
arXiv Detail & Related papers (2024-06-17T17:36:36Z) - Macroscopic quantum superpositions in superconducting circuits [0.0]
A test current pulse of fixed energy and adjustable length acquires quantum features after interacting with the quantum vacuum of the photon field.
As the length of the pulse grows with respect to the characteristic size of the quantum system, the test pulse undergoes quantum-to-classical transition.
This model differs from previous ones for its simplicity and points towards a new way of creating correlated systems suitable for quantum-based technology.
arXiv Detail & Related papers (2024-06-10T17:29:08Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Stochastic modeling of superconducting qudits in the dispersive regime [0.0773931605896092]
This work focuses on modeling the dispersive quadrature measurement in an open quantum system.
We verify our model with a series of experimental results on a transmon-type qutrit.
arXiv Detail & Related papers (2023-10-29T00:39:47Z) - Gate-tunable kinetic inductance parametric amplifier [0.0]
We present a gate-tunable parametric amplifier that operates without Josephson junctions.
This design achieves near-quantum-limited performance, featuring more than 20 dB gain and a 30 MHz gain-bandwidth product.
arXiv Detail & Related papers (2023-08-14T07:54:19Z) - A quantum fluctuation description of charge qubits [0.0]
We consider a specific instance of a superconducting circuit, the so-called charge-qubit, consisting of a capacitor and a Josephson junction.
We derive the Hamiltonian governing the quantum behavior of the circuit in the limit of a large number $N$ of quasi-spins.
arXiv Detail & Related papers (2023-04-26T07:43:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Quantum interference in asymmetric superconducting nanowire loops [0.0]
Superconducting electronic devices are based on the modulation of the supercurrent in superconducting loops.
The effects of asymmetries in such devices remain under-explored and poorly understood.
A model considering the length and electronic cross-section asymmetries in the loop provides a quantitative account of the observations.
arXiv Detail & Related papers (2022-03-31T17:22:19Z) - Singlet-doublet transitions of a quantum dot Josephson junction detected
in a transmon circuit [2.610856432667959]
Microwave spectroscopy of the transmon's transition spectrum allows us to probe the ground state parity of the quantum dot.
Our results can facilitate the realization of semiconductor-based $0-pi$ qubits and Andreev qubits.
arXiv Detail & Related papers (2022-02-25T15:20:55Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Magnifying quantum phase fluctuations with Cooper-pair pairing [0.0]
We fabricate a generalized Josephson element that can be tuned in situ between one- and two-Cooper-pair tunneling.
We measure a tenfold suppression of flux sensitivity of the first transition energy, implying a twofold increase in the vacuum phase fluctuations.
arXiv Detail & Related papers (2020-10-29T11:15:22Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.