論文の概要: RelCAT: Advancing Extraction of Clinical Inter-Entity Relationships from Unstructured Electronic Health Records
- arxiv url: http://arxiv.org/abs/2501.16077v1
- Date: Mon, 27 Jan 2025 14:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:09.000337
- Title: RelCAT: Advancing Extraction of Clinical Inter-Entity Relationships from Unstructured Electronic Health Records
- Title(参考訳): RelCAT:未構造化電子健康記録からの臨床組織間関係の抽出の促進
- Authors: Shubham Agarwal, Vlad Dinu, Thomas Searle, Mart Ratas, Anthony Shek, Dan F. Stein, James Teo, Richard Dobson,
- Abstract要約: RelCAT(Relation Concept Toolkit)は、臨床物語から抽出されたエンティティ間の関係を分類するための対話型ツール、ライブラリ、ワークフローである。
このツールキットは、BERTやLlamaといった最先端の機械学習モデルと、実証された評価とトレーニング方法を実装している。
我々は、データセットアノテーションツール(MedCATTrainer内に構築)、モデルトレーニング、および、公開されているゴールドスタンダードおよび実際の英国国立衛生サービス(NHS)病院臨床データセット上での方法論の評価を行った。
- 参考スコア(独自算出の注目度): 1.9065879861609418
- License:
- Abstract: This study introduces RelCAT (Relation Concept Annotation Toolkit), an interactive tool, library, and workflow designed to classify relations between entities extracted from clinical narratives. Building upon the CogStack MedCAT framework, RelCAT addresses the challenge of capturing complete clinical relations dispersed within text. The toolkit implements state-of-the-art machine learning models such as BERT and Llama along with proven evaluation and training methods. We demonstrate a dataset annotation tool (built within MedCATTrainer), model training, and evaluate our methodology on both openly available gold-standard and real-world UK National Health Service (NHS) hospital clinical datasets. We perform extensive experimentation and a comparative analysis of the various publicly available models with varied approaches selected for model fine-tuning. Finally, we achieve macro F1-scores of 0.977 on the gold-standard n2c2, surpassing the previous state-of-the-art performance, and achieve performance of >=0.93 F1 on our NHS gathered datasets.
- Abstract(参考訳): 本研究では,臨床物語から抽出されたエンティティ間の関係を分類するための対話型ツール,ライブラリ,ワークフローであるRelCAT(Relation Concept Annotation Toolkit)を紹介する。
CogStack MedCATフレームワーク上に構築されたRelCATは、テキスト内に分散された完全な臨床関係をキャプチャするという課題に対処する。
このツールキットは、BERTやLlamaといった最先端の機械学習モデルと、実証された評価とトレーニング方法を実装している。
我々は、データセットアノテーションツール(MedCATTrainer内に構築)、モデルトレーニング、および、公開されているゴールドスタンダードおよび実際の英国国立衛生サービス(NHS)病院臨床データセット上での方法論の評価を行った。
モデル微調整のための多種多様なアプローチを用いた各種公開モデルの比較実験および比較分析を行った。
最後に, 金標準のn2c2で0.977のマクロF1スコアを達成し, これまでの最先端性能を上回り, NHS収集データセットで0.93F1以上のパフォーマンスを実現した。
関連論文リスト
- CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations [2.77462589810782]
クリニックサムは、患者と医師の会話から臨床要約を自動的に生成するように設計されたフレームワークである。
自動測定(ROUGE、BERTScoreなど)と専門家による評価によって評価される。
論文 参考訳(メタデータ) (2024-12-05T15:34:02Z) - Named Clinical Entity Recognition Benchmark [2.9332007863461893]
本報告では, 名前付き臨床エンティティ認識ベンチマークを紹介する。
臨床物語から構造化された情報を抽出する重要な自然言語処理(NLP)タスクに対処する。
リーダーボードは多様な言語モデルを評価するための標準化されたプラットフォームを提供する。
論文 参考訳(メタデータ) (2024-10-07T14:00:18Z) - Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study [2.0884301753594334]
本研究は,医学テキスト分類のための様々な自然言語モデルの比較分析を行う。
BERTはBi-LSTMモデルを最大28%、ベースラインのBERTモデルを最大16%上回り、マイノリティクラスをリコールする。
論文 参考訳(メタデータ) (2024-08-30T10:28:49Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Enhancing Clinical Information Extraction with Transferred Contextual
Embeddings [9.143551270841858]
変換器(BERT)モデルによる双方向表現は、多くの自然言語処理(NLP)タスクにおいて最先端のパフォーマンスを達成した。
BERTをベースとした事前学習モデルは,軽度条件下で健康関連文書に転送可能であることを示す。
論文 参考訳(メタデータ) (2021-09-15T12:22:57Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Multi-domain Clinical Natural Language Processing with MedCAT: the
Medical Concept Annotation Toolkit [5.49956798378633]
オープンソースMedical Concept EHR Toolkit(MedMedCAT)について紹介する。
UMLS/SNOMED-CTを含む任意の概念語彙を用いて概念を抽出するための、新しい自己教師型機械学習アルゴリズムを提供する。
オープンデータセットからUMLS概念を抽出する際の性能改善を示す。
SNOMED-CTの実際の検証は、ロンドンの3大病院で、17万件の臨床記録から8.8Bワード以上の自己監督訓練が実施されている。
論文 参考訳(メタデータ) (2020-10-02T19:01:02Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。