論文の概要: Evaluation of NMT-Assisted Grammar Transfer for a Multi-Language Configurable Data-to-Text System
- arxiv url: http://arxiv.org/abs/2501.16135v1
- Date: Mon, 27 Jan 2025 15:25:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:06.712322
- Title: Evaluation of NMT-Assisted Grammar Transfer for a Multi-Language Configurable Data-to-Text System
- Title(参考訳): マルチ言語構成データ・テキスト・システムのためのNMT支援文法転送の評価
- Authors: Andreas Madsack, Johanna Heininger, Adela Schneider, Ching-Yi Chen, Christian Eckard, Robert Weißgraeber,
- Abstract要約: 多言語データ・テキスト生成のアプローチの1つは、ソース言語から各ターゲット言語に文法的な構成を前もって翻訳することである。
本稿では,ニューラルネットワーク翻訳(NMT)と1回の人間レビューを組み合わせたルールベースNLGの実装について述べる。
SportSett:Basketball データセットの評価から,我々の NLG システムは,翻訳作業における文法的正しさを基盤として,良好に動作していることが分かる。
- 参考スコア(独自算出の注目度): 0.04947896909360667
- License:
- Abstract: One approach for multilingual data-to-text generation is to translate grammatical configurations upfront from the source language into each target language. These configurations are then used by a surface realizer and in document planning stages to generate output. In this paper, we describe a rule-based NLG implementation of this approach where the configuration is translated by Neural Machine Translation (NMT) combined with a one-time human review, and introduce a cross-language grammar dependency model to create a multilingual NLG system that generates text from the source data, scaling the generation phase without a human in the loop. Additionally, we introduce a method for human post-editing evaluation on the automatically translated text. Our evaluation on the SportSett:Basketball dataset shows that our NLG system performs well, underlining its grammatical correctness in translation tasks.
- Abstract(参考訳): 多言語データ・テキスト生成のアプローチの1つは、ソース言語から各ターゲット言語に文法的な構成を前もって翻訳することである。
これらの構成は、サーフェスファインダとドキュメント計画段階で、出力を生成するために使用される。
本稿では、ニューラルネットワーク翻訳(NMT)と1回の人間レビューを組み合わせることで構成が変換されるこのアプローチのルールベースNLG実装について述べるとともに、言語間文法依存モデルを導入し、ソースデータからテキストを生成する多言語NLGシステムを作成し、ループ内に人間がいなくても生成フェーズをスケールする。
さらに,自動翻訳テキストにおける人による後編集評価手法についても紹介する。
SportSett:Basketball データセットの評価から,我々の NLG システムは,翻訳作業における文法的正しさを基盤として,良好に動作していることが分かる。
関連論文リスト
- A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
本研究では,言語固有の訓練データセットを使わずに,目的言語における文のペア間の推論関係(NLI)に対処するためのNLP手法を提案する。
我々は、同じトレーニング済みモデルの2つのインスタンスとともに、手動で翻訳される汎用翻訳データセットを利用する。
このモデルは、機械翻訳Stanford NLIテストデータセット、機械翻訳Multi-Genre NLIテストデータセット、手動翻訳RTE3-ITAテストデータセットで評価されている。
論文 参考訳(メタデータ) (2023-09-06T10:20:59Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Language Agnostic Data-Driven Inverse Text Normalization [6.43601166279978]
逆テキスト正規化(ITN)問題は、様々な分野から研究者の注目を集めている。
ラベル付き音声によるデータセットが不足しているため、非英語のデータ駆動ITNの研究は非常に限られている。
このギャップを埋めるために、言語に依存しないデータ駆動ITNフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-20T10:33:03Z) - Statistical Machine Translation for Indic Languages [1.8899300124593648]
本稿では,バイリンガル統計機械翻訳モデルの開発について論じる。
このシステムを構築するために,MOSES オープンソース SMT ツールキットについて検討した。
本実験では, BLEU, METEOR, RIBESなどの標準指標を用いて, 翻訳の質を評価する。
論文 参考訳(メタデータ) (2023-01-02T06:23:12Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
言語間アウトラインに基づく対話データセット(COD)は、自然言語の理解を可能にする。
CODは、4つの異なる言語で対話状態の追跡とエンドツーエンドの対話モデリングと評価を可能にする。
論文 参考訳(メタデータ) (2022-01-31T18:11:21Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
本稿では,多言語文法的誤り訂正のための汎用的かつ言語に依存しない戦略を提案する。
我々の手法は言語固有の操作を使わずに多様な並列GECデータを生成する。
NLPCC 2018 Task 2のデータセット(中国語)で最先端の結果を達成し、Falko-Merlin(ドイツ語)とRULEC-GEC(ロシア語)の競合性能を得る。
論文 参考訳(メタデータ) (2022-01-26T02:10:32Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
我々は、タスク固有のテキストデータの翻訳を最初に取得するために、中間ステップとしてNeural Machine Translationを使用します。
我々はNMTビームサーチグラフから単語混乱ネットワークを導出する手法を開発した。
NMT混在ネットワークは、n-gramと繰り返しニューラルネットワークLMの両方の難易度を低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-21T10:29:20Z) - Time-Stamped Language Model: Teaching Language Models to Understand the
Flow of Events [8.655294504286635]
我々はこの課題を質問応答問題として定式化することを提案する。
これにより、手続き的テキスト理解に適応することで、他のQAベンチマークで事前訓練された言語モデルを使用することができる。
Proparaデータセットで評価したモデルでは、F1スコアが3.1%上昇した状態での公開結果の改善が示されている。
論文 参考訳(メタデータ) (2021-04-15T17:50:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。