SWIFT: Mapping Sub-series with Wavelet Decomposition Improves Time Series Forecasting
- URL: http://arxiv.org/abs/2501.16178v2
- Date: Fri, 30 May 2025 07:30:41 GMT
- Title: SWIFT: Mapping Sub-series with Wavelet Decomposition Improves Time Series Forecasting
- Authors: Wenxuan Xie, Fanpu Cao,
- Abstract summary: $textitSWIFT$ is a lightweight model that is powerful, but also efficient in deployment and inference for Long-term Time Series Forecasting.<n>We conduct comprehensive experiments, and the results show that $textitSWIFT$ achieves state-of-the-art (SOTA) performance on multiple datasets.
- Score: 2.6764607949560593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent work on time-series prediction, Transformers and even large language models have garnered significant attention due to their strong capabilities in sequence modeling. However, in practical deployments, time-series prediction often requires operation in resource-constrained environments, such as edge devices, which are unable to handle the computational overhead of large models. To address such scenarios, some lightweight models have been proposed, but they exhibit poor performance on non-stationary sequences. In this paper, we propose $\textit{SWIFT}$, a lightweight model that is not only powerful, but also efficient in deployment and inference for Long-term Time Series Forecasting (LTSF). Our model is based on three key points: (i) Utilizing wavelet transform to perform lossless downsampling of time series. (ii) Achieving cross-band information fusion with a learnable filter. (iii) Using only one shared linear layer or one shallow MLP for sub-series' mapping. We conduct comprehensive experiments, and the results show that $\textit{SWIFT}$ achieves state-of-the-art (SOTA) performance on multiple datasets, offering a promising method for edge computing and deployment in this task. Moreover, it is noteworthy that the number of parameters in $\textit{SWIFT-Linear}$ is only 25\% of what it would be with a single-layer linear model for time-domain prediction. Our code is available at https://github.com/LancelotXWX/SWIFT.
Related papers
- Intention-Conditioned Flow Occupancy Models [69.79049994662591]
Large-scale pre-training has fundamentally changed how machine learning research is done today.<n>Applying this same framework to reinforcement learning is appealing because it offers compelling avenues for addressing core challenges in RL.<n>Recent advances in generative AI have provided new tools for modeling highly complex distributions.
arXiv Detail & Related papers (2025-06-10T15:27:46Z) - Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain [24.24834151329251]
OLinear is a $mathbfo$rthogonally transformed domain that operates in a $mathbfo$rthogonally transformed domain.<n>We introduce a customized linear layer, $mathbfNormLin$, which employs a normalized weight matrix to capture multivariate dependencies.<n>Experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency.
arXiv Detail & Related papers (2025-05-12T10:39:37Z) - Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
We introduce Sundial, a family of native, flexible, and scalable time series foundation models.
Our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions.
By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance.
arXiv Detail & Related papers (2025-02-02T14:52:50Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.
Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters [6.733646592789575]
Long-term Time Series Forecasting (LTSF) involves predicting long-term values by analyzing a large amount of historical time-series data to identify patterns and trends.
Transformer-based models offer high forecasting accuracy, but they are often too compute-intensive to be deployed on devices with hardware constraints.
We propose MixLinear, an ultra-lightweight time series forecasting model specifically designed for resource-constrained devices.
arXiv Detail & Related papers (2024-10-02T23:04:57Z) - PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil Financial Time Series Regularities [0.848210898747543]
Financial time series modeling is crucial for understanding and predicting market behaviors.
Traditional models struggle to capture complex patterns due to non-linearity, non-stationarity, and high noise levels.
Inspired by the success of large language models in NLP, we introduce $textbfPLUTUS$, a $textbfP$re-trained $textbfL$arge.
PLUTUS is the first open-source, large-scale, pre-trained financial time series model with over one billion parameters.
arXiv Detail & Related papers (2024-08-19T15:59:46Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters [16.966008476215258]
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF)
At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data.
SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data.
arXiv Detail & Related papers (2024-05-02T02:15:23Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - MatFormer: Nested Transformer for Elastic Inference [91.45687988953435]
MatFormer is a novel Transformer architecture designed to provide elastic inference across diverse deployment constraints.
MatFormer achieves this by incorporating a nested Feed Forward Network (FFN) block structure within a standard Transformer model.
We show that a 850M decoder-only MatFormer language model (MatLM) allows us to extract multiple smaller models spanning from 582M to 850M parameters.
arXiv Detail & Related papers (2023-10-11T17:57:14Z) - Pattern-based Long Short-term Memory for Mid-term Electrical Load
Forecasting [0.0]
This work presents a network for forecasting a monthly electricity demand time series with a one-year horizon.
The novelty of this work is the use of pattern representation of the seasonal time series as an alternative to decomposition.
A simulation study performed on the monthly electricity demand time series for 35 European countries confirmed the high performance of the proposed model.
arXiv Detail & Related papers (2020-04-22T08:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.