論文の概要: Enhancing and Exploring Mild Cognitive Impairment Detection with W2V-BERT-2.0
- arxiv url: http://arxiv.org/abs/2501.16201v1
- Date: Mon, 27 Jan 2025 16:55:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:54:57.493524
- Title: Enhancing and Exploring Mild Cognitive Impairment Detection with W2V-BERT-2.0
- Title(参考訳): W2V-BERT-2.0による軽度認知障害の検出と探索
- Authors: Yueguan Wang, Tatsunari Matsushima, Soichiro Matsushima, Toshimitsu Sakai,
- Abstract要約: 本研究では、TAUKADIALクロスランガルデータセットを用いて、軽度認知障害(MCI)を検出するための多言語音声自己教師学習モデルについて検討する。
これらの課題に対処するために,W2V-BERT-2.0を用いた発話から直接特徴を利用する。
この実験は競争力のある結果を示し、提案した推論ロジックはベースラインの改善に大きく貢献する。
- 参考スコア(独自算出の注目度): 1.3988930016464454
- License:
- Abstract: This study explores a multi-lingual audio self-supervised learning model for detecting mild cognitive impairment (MCI) using the TAUKADIAL cross-lingual dataset. While speech transcription-based detection with BERT models is effective, limitations exist due to a lack of transcriptions and temporal information. To address these issues, the study utilizes features directly from speech utterances with W2V-BERT-2.0. We propose a visualization method to detect essential layers of the model for MCI classification and design a specific inference logic considering the characteristics of MCI. The experiment shows competitive results, and the proposed inference logic significantly contributes to the improvements from the baseline. We also conduct detailed analysis which reveals the challenges related to speaker bias in the features and the sensitivity of MCI classification accuracy to the data split, providing valuable insights for future research.
- Abstract(参考訳): 本研究では、TAUKADIALクロスランガルデータセットを用いて、軽度認知障害(MCI)を検出するための多言語音声自己教師学習モデルについて検討する。
BERTモデルによる音声の書き起こしに基づく検出は有効であるが、文字起こしの欠如や時間情報の不足による制限が存在する。
これらの課題に対処するために,W2V-BERT-2.0を用いた発話から直接特徴を利用する。
本稿では,MCI分類モデルの基本層を可視化し,MCIの特性を考慮した特定の推論論理を設計する手法を提案する。
この実験は競争力のある結果を示し、提案した推論ロジックはベースラインの改善に大きく貢献する。
また,MCI分類における特徴の話者バイアスに関する課題と,データ分割に対するMCI分類精度の感度について詳細な分析を行い,今後の研究に有用な知見を提供する。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - Enhanced Fault Detection and Cause Identification Using Integrated Attention Mechanism [0.3749861135832073]
本研究では、双方向長短期記憶(BiLSTM)ニューラルネットワークと統合注意機構(IAM)を統合することにより、テネシー・イーストマン・プロセス(TEP)内の障害検出と原因特定のための新しい手法を提案する。
IAMは、スケールドドット製品に対する注意力、残留注意力、動的注意力を組み合わせて、TEP障害検出に不可欠な複雑なパターンや依存関係をキャプチャする。
BiLSTMネットワークはこれらの特徴を双方向に処理して長距離依存関係をキャプチャし、IAMは出力をさらに改善し、故障検出結果が改善された。
論文 参考訳(メタデータ) (2024-07-31T12:01:57Z) - Interpretable Temporal Class Activation Representation for Audio Spoofing Detection [7.476305130252989]
我々は、wav2vec 2.0モデルと注意的発話レベルの特徴を利用して、解釈可能性を直接モデルのアーキテクチャに統合する。
ASVspoof 2019-LAセットのEERは0.51%、min t-DCFは0.0165である。
論文 参考訳(メタデータ) (2024-06-13T05:36:01Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
本稿では,視覚的摂動校正の観点から,新しい協調学習手法を提案する。
具体的には、異なる摂動範囲で2種類のキュレートされた画像を構築するための視覚コントローラを考案する。
2つの診断VQA-CPベンチマークデータセットの実験結果は、その効果を明らかに示している。
論文 参考訳(メタデータ) (2022-07-24T23:50:52Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
会話型AIにおける効果的なあいまいさ検出と参照解決のためのモデルを提案する。
具体的には,TOD-BERTとLXMERTをベースとしたモデルを用いて,多数のベースラインと比較し,アブレーション実験を行う。
以上の結果から,(1)言語モデルでは曖昧さを検出するためにデータの相関を活用でき,(2)言語モデルではビジョンコンポーネントの必要性を回避できることがわかった。
論文 参考訳(メタデータ) (2022-02-25T12:10:02Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
自然言語処理と機械学習はアルツハイマー病(AD)を確実に検出するための有望な技術を提供する
最近のADReSSチャレンジデータセットにおいて、AD検出のための2つのアプローチのパフォーマンスを比較し、比較する。
認知障害検出における言語学の重要性を考えると,細調整BERTモデルはAD検出タスクにおいて特徴に基づくアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T04:50:47Z) - Attention-based Neural Bag-of-Features Learning for Sequence Data [143.62294358378128]
2D-Attention (2DA) は、シーケンスデータの一般的なアテンション定式化である。
提案したアテンションモジュールは、最近提案されたNeural Bag of Feature(NBoF)モデルに組み込まれ、学習能力を高める。
実験により,提案手法はNBoFモデルの性能を向上させるだけでなく,ノイズに耐性を持つことを示す。
論文 参考訳(メタデータ) (2020-05-25T17:51:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。