論文の概要: Enhanced Fault Detection and Cause Identification Using Integrated Attention Mechanism
- arxiv url: http://arxiv.org/abs/2408.00033v1
- Date: Wed, 31 Jul 2024 12:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:36:46.219110
- Title: Enhanced Fault Detection and Cause Identification Using Integrated Attention Mechanism
- Title(参考訳): 統合的注意機構を用いた断層検出・原因同定の高度化
- Authors: Mohammad Ali Labbaf Khaniki, Alireza Golkarieh, Houman Nouri, Mohammad Manthouri,
- Abstract要約: 本研究では、双方向長短期記憶(BiLSTM)ニューラルネットワークと統合注意機構(IAM)を統合することにより、テネシー・イーストマン・プロセス(TEP)内の障害検出と原因特定のための新しい手法を提案する。
IAMは、スケールドドット製品に対する注意力、残留注意力、動的注意力を組み合わせて、TEP障害検出に不可欠な複雑なパターンや依存関係をキャプチャする。
BiLSTMネットワークはこれらの特徴を双方向に処理して長距離依存関係をキャプチャし、IAMは出力をさらに改善し、故障検出結果が改善された。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a novel methodology for fault detection and cause identification within the Tennessee Eastman Process (TEP) by integrating a Bidirectional Long Short-Term Memory (BiLSTM) neural network with an Integrated Attention Mechanism (IAM). The IAM combines the strengths of scaled dot product attention, residual attention, and dynamic attention to capture intricate patterns and dependencies crucial for TEP fault detection. Initially, the attention mechanism extracts important features from the input data, enhancing the model's interpretability and relevance. The BiLSTM network processes these features bidirectionally to capture long-range dependencies, and the IAM further refines the output, leading to improved fault detection results. Simulation results demonstrate the efficacy of this approach, showcasing superior performance in accuracy, false alarm rate, and misclassification rate compared to existing methods. This methodology provides a robust and interpretable solution for fault detection and diagnosis in the TEP, highlighting its potential for industrial applications.
- Abstract(参考訳): 本研究では、双方向長短期記憶(BiLSTM)ニューラルネットワークと統合注意機構(IAM)を統合することにより、テネシー・イーストマン・プロセス(TEP)内の障害検出と原因特定のための新しい手法を提案する。
IAMは、スケールドドット製品に対する注意力、残留注意力、動的注意力を組み合わせて、TEP障害検出に不可欠な複雑なパターンや依存関係をキャプチャする。
当初、アテンションメカニズムは入力データから重要な特徴を抽出し、モデルの解釈可能性と妥当性を高める。
BiLSTMネットワークはこれらの特徴を双方向に処理して長距離依存関係をキャプチャし、IAMは出力をさらに改善し、故障検出結果が改善された。
シミュレーションの結果,従来の手法と比較して精度,誤報率,誤分類率に優れた性能を示した。
この手法は、TEPにおける断層検出と診断のための堅牢で解釈可能なソリューションを提供し、産業応用の可能性を強調している。
関連論文リスト
- Feature Selection via Dynamic Graph-based Attention Block in MI-based EEG Signals [0.0]
脳-コンピュータインタフェース(BCI)技術は、脳信号を分析して人間とコンピュータの直接的な相互作用を可能にする。
脳波信号は、しばしば低信号対雑音比、生理的アーティファクト、および個々の変数の影響を受けており、異なる特徴を抽出する際の課題を表している。
また、運動画像(MI)に基づく脳波信号には、MI特性との相関が低い特徴が含まれており、深部モデルの重みがそれらの特徴に偏っている可能性がある。
論文 参考訳(メタデータ) (2024-10-31T00:53:29Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Semi-supervised Anomaly Detection via Adaptive Reinforcement Learning-Enabled Method with Causal Inference for Sensor Signals [15.249261198557218]
センサ信号の半教師付き異常検出は、スマート製造におけるシステムの信頼性確保に不可欠である。
本稿では,三重補足型因果強化学習モデル(Tri-CRLAD)を革新的に構築する。
7つのセンサ信号データセットに対する実験結果から、Tri-CRLADは9つの最先端のベースライン法より優れていることが示された。
論文 参考訳(メタデータ) (2024-05-11T06:10:05Z) - Twin Transformer using Gated Dynamic Learnable Attention mechanism for Fault Detection and Diagnosis in the Tennessee Eastman Process [0.40964539027092917]
故障検出・診断(FDD)は,産業プロセスの安全性と効率を確保するための重要な課題である。
我々は、化学プロセス制御のための広く使われているベンチマークであるテネシー・イーストマン・プロセス(TEP)のための新しいFDD手法を提案する。
新しい注意機構であるGated Dynamic Learnable Attention (GDLAttention)を導入し、ゲーティング機構と動的学習機能を統合する。
論文 参考訳(メタデータ) (2024-03-16T07:40:23Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
軽度認知障害 (MCI) 解析に有効な接続性を推定するために, 階層型トランスフォーマー (BDHT) を用いた脳ディフューザを提案する。
提案手法は,既存手法に比べて精度と頑健性に優れる。
論文 参考訳(メタデータ) (2023-12-14T15:12:00Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)は、効率的な電力消費管理のための確立された技術である。
本稿では,畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BILSTM)を組み合わせたハイブリッド学習手法を提案する。
CNN-BILSTMモデルは、時間的(時間的)と空間的(位置的)の両方の特徴を抽出し、アプライアンスレベルでのエネルギー消費パターンを正確に識別することができる。
論文 参考訳(メタデータ) (2023-11-14T21:02:27Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
本稿では,テンポラルシーケンスに基づくグラフ注意源同定(TGASI)と呼ばれるシーケンス・ツー・シーケンス・ベースのローカライズ・フレームワークを提案する。
なお、このインダクティブラーニングのアイデアは、TGASIが他の事前の知識を知らずに新しいシナリオのソースを検出できることを保証する。
論文 参考訳(メタデータ) (2023-06-28T03:00:28Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。